MetabQuest Research Laboratory , 202 Chengfu Road, Beijing 100871, P. R. China.
Chem Res Toxicol. 2013 Jan 18;26(1):179-90. doi: 10.1021/tx300460k. Epub 2012 Dec 28.
The biotransformation of clopidogrel has been under extensive investigation to address the observed high clinical variability and resistance of its antithrombotic prodrug therapy. Clopidogrel (M0) is first activated to its thiolactone intermediate, 2-oxo-clopidogrel (M2), by hepatic cytochrome P450 (P450) enzymes. Subsequent P450-catalyzed S-oxidation is followed by thioester hydrolysis, which cleaves the thiolactone ring and yields a sulfenic acid intermediate (M12); this intermediate is reduced to the final active metabolite (M13). The aim of the present study is to characterize the metabolic fates of M2 more comprehensively with focus on the thiolactone ring-opening pathways. It was found that the bioactivating S-oxidation confers on the thiolactone moiety not only one electrophilic site at the carbonyl C-atom (Site A), but also a second one at the allylic bridge C-atom (Site B). Both sites can react with H2O or other nucleophiles, like glutathione (GSH), leading to different thiolactone ring-opening pathways. In addition to the pharmacologically desired A-H2O pathway leading to M13 formation, the A-GSH pathway leads to the formation of a glutathione conjugate (GS-3), the B-H2O pathway leads to the formation of a desulfurized hydroxyl metabolite (M17), and the B-GSH pathway leads to the formation of a desulfurized glutathione conjugate (GS-2). These results demonstrate the reactive nature of the electrophilic thiolactone S-oxide intermediate (M11) and suggest that M13 formation from M2 might be accompanied by more attenuating pathways than previously reported. The research presented here may facilitate future studies exploring the clinical antithrombotic response to clopidogrel as well as the susceptibility to the adverse effect of clopidogrel and its close prodrug analogues.
氯吡格雷的生物转化一直受到广泛研究,以解决其抗血栓前药治疗中观察到的高临床变异性和耐药性问题。氯吡格雷(M0)首先被肝微粒体 P450(P450)酶激活为其硫内酯中间体 2-氧代-氯吡格雷(M2)。随后,P450 催化的 S-氧化接着是硫酯水解,这会裂解硫内酯环并生成亚磺酸中间产物(M12);该中间产物被还原为最终的活性代谢物(M13)。本研究的目的是更全面地描述 M2 的代谢命运,重点关注硫内酯开环途径。研究发现,生物激活的 S-氧化不仅使硫内酯部分在羰基碳原子(部位 A)上具有一个亲电位点,而且在烯丙基桥碳原子(部位 B)上具有第二个亲电位点。两个位点都可以与 H2O 或其他亲核试剂(如谷胱甘肽(GSH))反应,导致不同的硫内酯开环途径。除了导致 M13 形成的药理学上所需的 A-H2O 途径外,A-GSH 途径导致谷胱甘肽缀合物(GS-3)的形成,B-H2O 途径导致去磺化羟基代谢物(M17)的形成,而 B-GSH 途径导致去磺化谷胱甘肽缀合物(GS-2)的形成。这些结果表明,亲电硫内酯 S-氧化物中间产物(M11)具有反应性,并表明 M13 可能是由 M2 形成的,而不是以前报道的那样。本文的研究结果可能有助于未来探索氯吡格雷的临床抗血栓反应以及对氯吡格雷及其密切的前药类似物的不良反应易感性的研究。