Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106-07, Taiwan.
J Phys Chem B. 2013 Jan 17;117(2):563-82. doi: 10.1021/jp305516g. Epub 2013 Jan 2.
Here, for the first time, we show that with addition of a biological buffer, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), into aqueous solutions of tetrahydrofuran (THF), 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone, the organic solvent can be excluded from water to form a new liquid phase. The phase diagrams have been determined at ambient temperature. In order to understand why and how a zwitterion solute (HEPES) induced phase separation of the investigated systems, molecular dynamics (MD) simulation studies are performed for HEPES + water + THF system. The MD simulations were conducted for the aqueous mixtures with 12 different compositions. The reliability of the simulation results of HEPES in pure water and beyond the phase separation mixtures was justified by comparing the densities obtained from MD with the experimental values. The simulation results of HEPES in pure THF and in a composition inside the phase separation region were justified qualitatively. Interestingly, all HEPES molecules entirely aggregated in pure THF. This reveals that HEPES is insoluble in pure THF, which is consistent with the experimental results. Even more interestingly, the MD simulation for the mixture with composition inside the phase separation region showed the formation of two phases. The THF molecules are squeezed out from the water network into a new liquid phase. The hydrogen bonds (HBs), HB lifetime, HB Gibbs energy (ΔG), radial distribution functions (RDFs), coordination numbers (CNs), electrostatic interactions, and the van der Waals interactions between the different species have been analyzed. Further, MD simulations for the other phase separation systems by choosing a composition inside the two liquids region for each system were also simulated. Our findings will therefore pave the way for designing new benign separation auxiliary agents.
在这里,我们首次表明,在向四氢呋喃(THF)、1,3-二氧戊环、1,4-二恶烷、1-丙醇、2-丙醇、叔丁醇、乙腈或丙酮的水溶液中加入生物缓冲剂 4-(2-羟乙基)哌嗪-1-乙磺酸(HEPES)后,有机溶剂可以从水中被排除,形成新的液相。相图是在环境温度下确定的。为了理解为什么和如何两性离子溶质(HEPES)会引起所研究体系的相分离,我们对 HEPES+水+THF 体系进行了分子动力学(MD)模拟研究。MD 模拟针对 12 种不同组成的水相混合物进行了研究。通过将从 MD 获得的密度与实验值进行比较,证明了在纯水中以及在相分离混合物之外模拟 HEPES 的结果的可靠性。定性地证明了在纯 THF 中和在相分离区域内的组成中模拟 HEPES 的结果的合理性。有趣的是,所有的 HEPES 分子在纯 THF 中完全聚集。这表明 HEPES 不溶于纯 THF,这与实验结果一致。更有趣的是,在相分离区域内组成的混合物的 MD 模拟显示出两相的形成。THF 分子从水网络中被挤出到新的液相中。氢键(HB)、HB 寿命、HB 吉布斯能量(ΔG)、径向分布函数(RDFs)、配位数(CNs)、静电相互作用和不同物种之间的范德华相互作用进行了分析。此外,还通过选择每个体系的两种液体区域内的组成,对其他相分离体系进行了 MD 模拟。因此,我们的发现将为设计新的良性分离辅助剂铺平道路。