Suppr超能文献

在空间模拟条件下,结晶度对 1MeV 质子辐照诱导甘氨酸分解的影响。

The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions.

机构信息

Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, Brazil.

出版信息

Astrobiology. 2013 Jan;13(1):79-91. doi: 10.1089/ast.2012.0877. Epub 2012 Dec 18.

Abstract

Glycine is the simplest proteinaceous amino acid and is present in all life-forms on Earth. In aqueous solutions, it appears mainly as zwitterion glycine (+NH3CH2COO-); however, in solid phase, it may be found in amorphous or crystalline (α, β, and γ) forms. The crystalline forms differ from each other by the packing of zwitterions in the unitary cells and by the number of intermolecular hydrogen bonds. This molecular species has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, glycine is exposed to several radiation fields at different temperatures. We present an experimental study on the destruction of zwitterionic glycine crystals at room temperature by 1 MeV protons, in which the dependence of the destruction rates of the α-glycine and β-glycine crystals on bombardment fluence is investigated. The samples were analyzed in situ by Fourier transform infrared spectrometry at different proton fluences. The experiments occurred under ultrahigh vacuum conditions at the Van de Graaff accelerator lab at the Pontifical Catholic University at Rio de Janeiro (PUC-Rio), Brazil. For low fluences, the dissociation cross section of α-glycine was observed to be 2.5×10(-14) cm2, a value roughly 5 times higher than the dissociation cross section found for β-glycine. The estimated half-lives of α-glycine and β-glycine zwitterionic forms extrapolated to the Earth orbit environment are 9×10(5) and 4×10(6) years, respectively. In the diffuse interstellar medium the estimated values are 1 order of magnitude lower. These results suggest that pristine interstellar β-glycine is the one most likely to survive the hostile environments of space radiation. A small feature around 1650-1700 cm(-1), tentatively attributed to an amide functional group, was observed in the IR spectra of irradiated samples, suggesting that cosmic rays may induce peptide bond synthesis in glycine crystals. Combining this finding with the fact that this form has the highest solubility among the other glycine polymorphs, we suggest that β-glycine is the one most likely to have produced the first peptides on primitive Earth.

摘要

甘氨酸是最简单的蛋白质氨基酸,存在于地球上的所有生命形式中。在水溶液中,它主要以两性离子甘氨酸(+NH3CH2COO-)的形式存在;然而,在固相,它可能以无定形或结晶(α、β和γ)形式存在。这些结晶形式通过单元细胞中两性离子的堆积和分子间氢键的数量而彼此不同。这种分子物种在碳质陨石中被广泛检测到,并且最近在美国宇航局的星尘号太空船带回的彗星样本中被观察到。在太空中,甘氨酸暴露于不同温度下的几种辐射场中。我们在室温下用 1 MeV 质子对两性离子甘氨酸晶体的破坏进行了实验研究,研究了α-甘氨酸和β-甘氨酸晶体的破坏速率随辐照通量的依赖性。在不同质子通量下,通过傅里叶变换红外光谱原位分析了样品。实验在巴西里约热内卢天主教大学范德格拉夫加速器实验室(PUC-Rio)的超高真空条件下进行。对于低通量,观察到α-甘氨酸的离解截面为 2.5×10(-14)cm2,这一值大约比β-甘氨酸的离解截面高 5 倍。α-甘氨酸和β-甘氨酸两性离子形式的估计半衰期在地球轨道环境中分别为 9×10(5)和 4×10(6)年。在弥漫星际介质中,估计值低一个数量级。这些结果表明,原始星际β-甘氨酸是最有可能在太空辐射恶劣环境中存活下来的。在辐照样品的红外光谱中观察到 1650-1700cm(-1)左右的一个小特征,推测其为酰胺官能团,这表明宇宙射线可能在甘氨酸晶体中诱导肽键合成。将这一发现与这种形式在其他甘氨酸多晶型物中具有最高溶解度的事实相结合,我们认为β-甘氨酸是最有可能在原始地球上产生第一批肽的物质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验