Suppr超能文献

眨眼干扰对上丘微刺激诱发的扫视的影响。

Blink perturbation effects on saccades evoked by microstimulation of the superior colliculus.

机构信息

Department of Bioengineering, University of Pittsburgh, Pennsylvania, USA.

出版信息

PLoS One. 2012;7(12):e51843. doi: 10.1371/journal.pone.0051843. Epub 2012 Dec 14.

Abstract

Current knowledge of saccade-blink interactions suggests that blinks have paradoxical effects on saccade generation. Blinks suppress saccade generation by attenuating the oculomotor drive command in structures like the superior colliculus (SC), but they also disinhibit the saccadic system by removing the potent inhibition of pontine omnipause neurons (OPNs). To better characterize these effects, we evoked the trigeminal blink reflex by delivering an air puff to one eye as saccades were evoked by sub-optimal stimulation of the SC. For every stimulation site, the peak and average velocities of stimulation with blink movements (SwBMs) were lower than stimulation-only saccades (SoMs), supporting the notion that the oculomotor drive is weakened in the presence of a blink. In contrast, the duration of the SwBMs was longer, consistent with the hypothesis that the blink-induced inhibition of the OPNs could prolong the window of time available for oculomotor commands to drive an eye movement. The amplitude of the SwBM could also be larger than the SoM amplitude obtained from the same site, particularly for cases in which blink-associated eye movements exhibited the slowest kinematics. The results are interpreted in terms of neural signatures of saccade-blink interactions.

摘要

目前关于扫视-眨眼相互作用的知识表明,眨眼对视动生成具有矛盾的影响。眨眼通过减弱上丘(SC)等结构中的眼球运动驱动命令来抑制扫视生成,但它们通过消除桥脑中间神经元(OPNs)的有效抑制来使扫视系统去抑制。为了更好地描述这些影响,我们通过向一只眼睛吹气来引发三叉神经眨眼反射,同时通过 SC 的次优刺激来引发扫视。对于每个刺激部位,眨眼运动(SwBM)的峰值和平均速度都低于仅刺激扫视(SoM),这支持了在眨眼存在的情况下眼球运动驱动减弱的观点。相比之下,SwBM 的持续时间更长,这与眨眼诱导的 OPN 抑制可以延长眼球运动命令驱动眼球运动的时间窗口的假设一致。SwBM 的振幅也可能大于从同一部位获得的 SoM 振幅,尤其是在与眨眼相关的眼球运动表现出最慢运动学的情况下。这些结果是根据扫视-眨眼相互作用的神经特征来解释的。

相似文献

1
Blink perturbation effects on saccades evoked by microstimulation of the superior colliculus.
PLoS One. 2012;7(12):e51843. doi: 10.1371/journal.pone.0051843. Epub 2012 Dec 14.
2
Blink-perturbed saccades in monkey. I. Behavioral analysis.
J Neurophysiol. 2000 Jun;83(6):3411-29. doi: 10.1152/jn.2000.83.6.3411.
3
Blink-perturbed saccades in monkey. II. Superior colliculus activity.
J Neurophysiol. 2000 Jun;83(6):3430-52. doi: 10.1152/jn.2000.83.6.3430.
4
Differential effects of reflex blinks on saccade perturbations in humans.
J Neurophysiol. 2010 Mar;103(3):1685-95. doi: 10.1152/jn.00788.2009. Epub 2010 Feb 3.
5
Temporal interactions of air-puff-evoked blinks and saccadic eye movements: insights into motor preparation.
J Neurophysiol. 2005 Mar;93(3):1718-29. doi: 10.1152/jn.00854.2004. Epub 2004 Oct 6.
6
Influence of the superior colliculus on the primate blink reflex.
Exp Brain Res. 1997 Oct;116(3):389-98. doi: 10.1007/pl00005767.
7
Blinks slow memory-guided saccades.
J Neurophysiol. 2013 Feb;109(3):734-41. doi: 10.1152/jn.00746.2012. Epub 2012 Nov 14.
8
Differential effects of blinks on horizontal saccade and smooth pursuit initiation in humans.
Exp Brain Res. 2004 Jun;156(3):314-24. doi: 10.1007/s00221-003-1791-z. Epub 2004 Feb 14.
10

引用本文的文献

1
An oculometrics-based biofeedback system to impede fatigue development during computer work: A proof-of-concept study.
PLoS One. 2019 May 31;14(5):e0213704. doi: 10.1371/journal.pone.0213704. eCollection 2019.
2
Contrasting speed-accuracy tradeoffs for eye and hand movements reveal the optimal nature of saccade kinematics.
J Neurophysiol. 2017 Sep 1;118(3):1664-1676. doi: 10.1152/jn.00329.2017. Epub 2017 Jul 5.
4
Effects of visual cortex activation on the nociceptive blink reflex in healthy subjects.
PLoS One. 2014 Jun 17;9(6):e100198. doi: 10.1371/journal.pone.0100198. eCollection 2014.

本文引用的文献

1
Optimal control of saccades by spatial-temporal activity patterns in the monkey superior colliculus.
PLoS Comput Biol. 2012;8(5):e1002508. doi: 10.1371/journal.pcbi.1002508. Epub 2012 May 17.
2
The relative impact of microstimulation parameters on movement generation.
J Neurophysiol. 2012 Jul;108(2):528-38. doi: 10.1152/jn.00257.2012. Epub 2012 Apr 25.
3
A test of spatial temporal decoding mechanisms in the superior colliculus.
J Neurophysiol. 2012 May;107(9):2442-52. doi: 10.1152/jn.00992.2011. Epub 2012 Jan 25.
4
Interactions between gaze-evoked blinks and gaze shifts in monkeys.
Exp Brain Res. 2012 Feb;216(3):321-39. doi: 10.1007/s00221-011-2937-z. Epub 2011 Nov 15.
5
Motor functions of the superior colliculus.
Annu Rev Neurosci. 2011;34:205-31. doi: 10.1146/annurev-neuro-061010-113728.
7
Local neural processing and the generation of dynamic motor commands within the saccadic premotor network.
J Neurosci. 2010 Aug 11;30(32):10905-17. doi: 10.1523/JNEUROSCI.0393-10.2010.
8
Macaque pontine omnipause neurons play no direct role in the generation of eye blinks.
J Neurophysiol. 2010 Apr;103(4):2255-74. doi: 10.1152/jn.01150.2009. Epub 2010 Feb 17.
9
Differential effects of reflex blinks on saccade perturbations in humans.
J Neurophysiol. 2010 Mar;103(3):1685-95. doi: 10.1152/jn.00788.2009. Epub 2010 Feb 3.
10
Linear ensemble-coding in midbrain superior colliculus specifies the saccade kinematics.
Biol Cybern. 2008 Jun;98(6):561-77. doi: 10.1007/s00422-008-0219-z. Epub 2008 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验