Suppr超能文献

在盐环境中肽的构象自由能景观。

Conformational free-energy landscapes for a peptide in saline environments.

机构信息

Department of Chemistry and Biochemistry, Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.

出版信息

Biophys J. 2012 Dec 19;103(12):2513-20. doi: 10.1016/j.bpj.2012.11.001. Epub 2012 Dec 18.

Abstract

The conformations that proteins adopt in solution are a function of both their primary structure and surrounding aqueous environment. Recent experimental and computational work on small peptides, e.g., polyK, polyE, and polyR, have highlighted an interesting and unusual behavior in the presence of aqueous ions such as ClO₄⁻, Na⁺, and K⁺. Notwithstanding the aforementioned studies, as of this writing, the nature of the driving force induced by the presence of ions and its role on the conformational stability of peptides remains only partially understood. Molecular-dynamics simulations have been performed on the heptapeptide AEAAAEA in NaCl and KCl solutions at concentrations of 0.5, 1.0, and 2.0 M. Metadynamics in conjunction with a three-dimensional model reaction coordinate was used to sample the conformational space of the peptide. All simulations were run for 2 μs. Free-energy landscapes were computed over the model reaction coordinate for the peptide in each saline assay as well as in the absence of ions. Circular dichroism spectra were also calculated from each trajectory. In the presence of Na⁺ and K⁺ ions, no increase in helicity is observed with respect to the conformation in pure water.

摘要

蛋白质在溶液中的构象是其一级结构和周围水相环境的共同功能。最近关于小肽(例如,多 K、多 E 和多 R)的实验和计算工作强调了在存在水合离子(如 ClO₄⁻、Na⁺和 K⁺)时的一种有趣和不寻常的行为。尽管进行了上述研究,但截至撰写本文时,离子存在所诱导的驱动力的性质及其对肽构象稳定性的作用仍未完全理解。在 0.5、1.0 和 2.0 M 的 NaCl 和 KCl 溶液中对七肽 AEAAAEA 进行了分子动力学模拟。元动力学与三维模型反应坐标相结合,用于采样肽的构象空间。所有模拟均运行 2 μs。在每个盐析测定以及没有离子的情况下,针对肽在模型反应坐标上计算了自由能景观。还从每个轨迹计算了圆二色性光谱。在存在 Na⁺和 K⁺离子的情况下,与纯水中的构象相比,没有观察到螺旋度增加。

相似文献

1
Conformational free-energy landscapes for a peptide in saline environments.
Biophys J. 2012 Dec 19;103(12):2513-20. doi: 10.1016/j.bpj.2012.11.001. Epub 2012 Dec 18.
2
Salt-specific stability and denaturation of a short salt-bridge-forming alpha-helix.
J Am Chem Soc. 2008 Oct 22;130(42):14000-7. doi: 10.1021/ja805562g. Epub 2008 Sep 27.
3
Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.
J Chem Phys. 2006 Oct 14;125(14):144503. doi: 10.1063/1.2358134.
4
The impact of monovalent ion force field model in nucleic acids simulations.
Phys Chem Chem Phys. 2009 Dec 7;11(45):10596-607. doi: 10.1039/b912067j. Epub 2009 Aug 18.
5
6
Solvent and salt effects on structural stability of human telomere.
J Phys Chem B. 2011 Mar 17;115(10):2408-16. doi: 10.1021/jp1096019. Epub 2011 Feb 18.
7
Specific interactions of sodium salts with alanine dipeptide and tetrapeptide in water: insights from molecular dynamics.
J Phys Chem B. 2011 Nov 17;115(45):13389-400. doi: 10.1021/jp207068m. Epub 2011 Oct 24.
9
Solvent effects and hydration of a tripeptide in sodium halide aqueous solutions: an in silico study.
Phys Chem Chem Phys. 2007 Oct 28;9(40):5423-35. doi: 10.1039/b706564g. Epub 2007 Jul 31.
10
Salt effects on water/hydrophobic liquid interfaces: a molecular dynamics study.
J Phys Condens Matter. 2012 Mar 28;24(12):124109. doi: 10.1088/0953-8984/24/12/124109. Epub 2012 Mar 6.

引用本文的文献

1
Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B.
Nat Struct Mol Biol. 2017 Feb;24(2):131-139. doi: 10.1038/nsmb.3344. Epub 2016 Dec 19.
2
Thermodynamics of Deca-alanine Folding in Water.
J Chem Theory Comput. 2014 Jul 8;10(7):2836-2844. doi: 10.1021/ct5002076. Epub 2014 May 9.

本文引用的文献

1
Exploring Multidimensional Free Energy Landscapes Using Time-Dependent Biases on Collective Variables.
J Chem Theory Comput. 2010 Jan 12;6(1):35-47. doi: 10.1021/ct9004432. Epub 2009 Dec 3.
2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Effects of Hofmeister ions on the α-helical structure of proteins.
Biophys J. 2012 Feb 22;102(4):907-15. doi: 10.1016/j.bpj.2012.01.035. Epub 2012 Feb 21.
4
How does the first water shell fold proteins so fast?
J Chem Phys. 2011 Feb 28;134(8):085107. doi: 10.1063/1.3554731.
5
Molecular motions in drug design: the coming age of the metadynamics method.
J Comput Aided Mol Des. 2011 May;25(5):395-402. doi: 10.1007/s10822-011-9415-3. Epub 2011 Feb 17.
6
Ion specificity in α-helical folding kinetics.
J Phys Chem B. 2010 Nov 4;114(43):13815-22. doi: 10.1021/jp107495f.
7
Sodium perchlorate effects on the helical stability of a mainly alanine peptide.
Biophys J. 2010 Jan 20;98(2):186-96. doi: 10.1016/j.bpj.2009.10.013.
8
Cation specific binding with protein surface charges.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13296-300. doi: 10.1073/pnas.0902904106. Epub 2009 Jul 28.
10
Salt-specific stability and denaturation of a short salt-bridge-forming alpha-helix.
J Am Chem Soc. 2008 Oct 22;130(42):14000-7. doi: 10.1021/ja805562g. Epub 2008 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验