Suppr超能文献

分子模拟提示的时间分辨荧光的局限性:评估 T 细胞受体结合环的动力学。

Limitations of time-resolved fluorescence suggested by molecular simulations: assessing the dynamics of T cell receptor binding loops.

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.

出版信息

Biophys J. 2012 Dec 19;103(12):2532-40. doi: 10.1016/j.bpj.2012.10.037. Epub 2012 Dec 18.

Abstract

Time-resolved fluorescence anisotropy (TRFA) has a rich history in evaluating protein dynamics. Yet as often employed, TRFA assumes that the motional properties of a covalently tethered fluorescent probe accurately portray the motional properties of the protein backbone at the probe attachment site. In an extensive survey using TRFA to study the dynamics of the binding loops of a αβ T cell receptor, we observed multiple discrepancies between the TRFA data and previously published results that led us to question this assumption. We thus simulated several of the experimentally probed systems using a protocol that permitted accurate determination of probe and protein time correlation functions. We found excellent agreement in the decays of the experimental and simulated correlation functions. However, the motional properties of the probe were poorly correlated with those of the backbone of both the labeled and unlabeled protein. Our results warrant caution in the interpretation of TRFA data and suggest further studies to ascertain the extent to which probe dynamics reflect those of the protein backbone. Meanwhile, the agreement between experiment and computation validates the use of molecular dynamics simulations as an accurate tool for exploring the molecular motion of T cell receptors and their binding loops.

摘要

时间分辨荧光各向异性(TRFA)在评估蛋白质动力学方面有着丰富的历史。然而,正如通常所假设的那样,共价连接的荧光探针的运动性质准确地描绘了探针附着位置处的蛋白质主链的运动性质。在使用 TRFA 研究 αβ T 细胞受体结合环动力学的广泛调查中,我们观察到 TRFA 数据与先前发表的结果之间存在多个差异,这使我们对这一假设产生了质疑。因此,我们使用允许准确确定探针和蛋白质时间相关函数的协议模拟了几个实验探测的系统。我们发现实验和模拟相关函数的衰减非常吻合。然而,探针的运动性质与标记和未标记蛋白质主链的运动性质相关性很差。我们的结果表明在解释 TRFA 数据时需要谨慎,并建议进一步研究以确定探针动力学在多大程度上反映了蛋白质主链的运动。同时,实验和计算之间的一致性验证了使用分子动力学模拟作为探索 T 细胞受体及其结合环分子运动的准确工具的有效性。

相似文献

1
6
Integrated NMR, Fluorescence, and Molecular Dynamics Benchmark Study of Protein Mechanics and Hydrodynamics.
J Phys Chem B. 2019 Feb 21;123(7):1453-1480. doi: 10.1021/acs.jpcb.8b08903. Epub 2019 Jan 8.
8
Thienoguanosine, a unique non-perturbing reporter for investigating rotational dynamics of DNA duplexes and their complexes with proteins.
Int J Biol Macromol. 2022 Jul 31;213:210-225. doi: 10.1016/j.ijbiomac.2022.05.162. Epub 2022 May 26.
9
Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity, specificity, and binding mechanism.
J Mol Biol. 2011 Dec 2;414(3):385-400. doi: 10.1016/j.jmb.2011.10.006. Epub 2011 Oct 12.
10
The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops.
Protein Sci. 2016 Apr;25(4):815-25. doi: 10.1002/pro.2874. Epub 2016 Jan 20.

引用本文的文献

1
T-Cell Receptor CDR3 Loop Conformations in Solution Shift the Relative Vα-Vβ Domain Distributions.
Front Immunol. 2020 Jul 8;11:1440. doi: 10.3389/fimmu.2020.01440. eCollection 2020.
2
T cell receptor interactions with human leukocyte antigen govern indirect peptide selectivity for the cancer testis antigen MAGE-A4.
J Biol Chem. 2020 Aug 14;295(33):11486-11494. doi: 10.1074/jbc.RA120.014016. Epub 2020 Jun 12.
3
Peptide cargo tunes a network of correlated motions in human leucocyte antigens.
FEBS J. 2020 Sep;287(17):3777-3793. doi: 10.1111/febs.15278. Epub 2020 Mar 26.
4
The Hypervariable Loops of Free TCRs Sample Multiple Distinct Metastable Conformations in Solution.
Front Mol Biosci. 2018 Nov 13;5:95. doi: 10.3389/fmolb.2018.00095. eCollection 2018.
6
Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings.
Front Immunol. 2017 Aug 7;8:935. doi: 10.3389/fimmu.2017.00935. eCollection 2017.
7
A generalized framework for computational design and mutational scanning of T-cell receptor binding interfaces.
Protein Eng Des Sel. 2016 Dec;29(12):595-606. doi: 10.1093/protein/gzw050. Epub 2016 Sep 13.
8
Nanosecond Dynamics of Gαi1 Bound to Nucleotides or Ric-8A, a Gα Chaperone with GEF Activity.
Biophys J. 2016 Aug 23;111(4):722-731. doi: 10.1016/j.bpj.2016.07.021.
10
TCR scanning of peptide/MHC through complementary matching of receptor and ligand molecular flexibility.
J Immunol. 2014 Mar 15;192(6):2885-91. doi: 10.4049/jimmunol.1302953. Epub 2014 Feb 12.

本文引用的文献

1
Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18690-5. doi: 10.1073/pnas.1015461108. Epub 2011 Oct 28.
2
Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity, specificity, and binding mechanism.
J Mol Biol. 2011 Dec 2;414(3):385-400. doi: 10.1016/j.jmb.2011.10.006. Epub 2011 Oct 12.
4
Conformational melding permits a conserved binding geometry in TCR recognition of foreign and self molecular mimics.
J Immunol. 2011 Mar 1;186(5):2950-8. doi: 10.4049/jimmunol.1003150. Epub 2011 Jan 31.
7
The multiple mechanisms of T cell receptor cross-reactivity.
Immunity. 2009 Dec 18;31(6):849-51. doi: 10.1016/j.immuni.2009.12.002.
10
The dynamics of water at DNA interfaces: computational studies of Hoechst 33258 bound to DNA.
J Am Chem Soc. 2008 Oct 1;130(39):13103-9. doi: 10.1021/ja803728g. Epub 2008 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验