Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.
Circ Arrhythm Electrophysiol. 2013 Feb;6(1):129-36. doi: 10.1161/CIRCEP.112.971986. Epub 2012 Dec 22.
Risk assessment studies use a suite of nominally independent noninvasive heart rate metrics, often brought together in a statistical model to compute a risk score. The ongoing need to noninvasively identify the higher risk patients requiring more invasive investigations/interventions drives the search for better noninvasive predictive metrics, with increased sensitivity. Many varieties of autoregulatory malfunction occur within the cardiovascular system; thus, it seems a daunting challenge to build predictive models that account for all potential modes of failure. Auto-entrainment (AE) methodology was developed to help address this challenge.
AE methodology tests intrinsic capacity to maintain a stable and coherent oscillatory dynamic of autoregulatory control via respiratory entrainment of the blood pressure and heart period. Using cardiovascular death (n=18) at follow-up (1.5 years) as the end point, analysis of AE measurements from 148 patients with heart failure revealed 2 parameters significantly predictive of death. Using logistic regression, the magnitude of systolic pulsus alternans measured during AE had predictive sensitivity of 90% (confidence interval, 62%-100% and specificity of 62% (confidence interval, 49%-74%). The capacity to maintain a stable oscillatory dynamic was measured by the fraction of the total RR-interval spectral power contained within the AE-band. This capacity had predictive sensitivity of 73% (confidence interval, 47%-99%) and specificity of 55% (confidence interval, 43%-66%).
AE methodology provides a noninvasive platform to assess the integrity of cardiovascular autoregulatory control systems for risk assessment in heart failure patients.
风险评估研究使用一套名义上独立的非侵入性心率指标,这些指标通常汇集在一个统计模型中,以计算风险评分。目前需要非侵入性地识别需要更多侵入性检查/干预的高风险患者,这推动了寻找更好的、具有更高敏感性的非侵入性预测指标的研究。心血管系统中会出现多种自动调节功能障碍;因此,建立能够考虑所有潜在故障模式的预测模型似乎是一项艰巨的挑战。自动同步(AE)方法学的发展有助于解决这一挑战。
AE 方法学通过呼吸对血压和心跳周期的同步来测试维持自动调节控制稳定和连贯的振荡动力学的固有能力。以 148 例心力衰竭患者的 AE 测量值为分析对象,以随访(1.5 年)期间的心血管死亡(n=18)为终点,分析结果显示 2 个参数对死亡具有显著的预测性。使用逻辑回归,在 AE 期间测量的收缩期脉动交替的幅度具有 90%的预测敏感性(置信区间,62%-100%)和 62%的特异性(置信区间,49%-74%)。通过 AE 波段内总 RR 间隔频谱功率的分数来测量维持稳定振荡动力学的能力。这种能力具有 73%的预测敏感性(置信区间,47%-99%)和 55%的特异性(置信区间,43%-66%)。
AE 方法学为评估心力衰竭患者心血管自动调节控制系统的完整性提供了一个非侵入性的平台,可用于风险评估。