Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, and Munich Center For Integrated Protein Science (CIPSM), 85354 Freising, Germany.
J Am Chem Soc. 2013 Jan 30;135(4):1317-29. doi: 10.1021/ja3112093. Epub 2013 Jan 16.
The etiology of Alzheimer's disease depends on the relative abundance of different amyloid-β (Aβ) peptide species. These peptides are produced by sequential proteolytic cleavage within the transmembrane helix of the 99 residue C-terminal fragment of the amyloid precursor protein (C99) by the intramembrane protease γ-secretase. Intramembrane proteolysis is thought to require local unfolding of the substrate helix, which has been proposed to be cleaved as a homodimer. Here, we investigated the backbone dynamics of the substrate helix. Amide exchange experiments of monomeric recombinant C99 and of synthetic transmembrane domain peptides reveal that the N-terminal Gly-rich homodimerization domain exchanges much faster than the C-terminal cleavage region. MD simulations corroborate the differential backbone dynamics, indicate a bending motion at a diglycine motif connecting dimerization and cleavage regions, and detect significantly different H-bond stabilities at the initial cleavage sites. Our results are consistent with the following hypotheses about cleavage of the substrate: First, the GlyGly hinge may precisely position the substrate within γ-secretase such that its catalytic center must start proteolysis at the known initial cleavage sites. Second, the ratio of cleavage products formed by subsequent sequential proteolysis could be influenced by differential extents of solvation and by the stabilities of H-bonds at alternate initial sites. Third, the flexibility of the Gly-rich domain may facilitate substrate movement within the enzyme during sequential proteolysis. Fourth, dimerization may affect substrate processing by decreasing the dynamics of the dimerization region and by increasing that of the C-terminal part of the cleavage region.
阿尔茨海默病的病因取决于不同淀粉样β(Aβ)肽的相对丰度。这些肽是由跨膜丝氨酸蛋白酶γ-分泌酶在淀粉样前体蛋白(C99)99 个残基的 C 端片段的跨膜螺旋内通过顺序蛋白水解切割产生的。跨膜蛋白水解被认为需要底物螺旋的局部展开,这被提议作为同源二聚体进行切割。在这里,我们研究了底物螺旋的骨架动力学。单体重组 C99 和合成跨膜结构域肽的酰胺交换实验表明,N 端富含甘氨酸的同源二聚化结构域的交换速度比 C 端切割区域快得多。MD 模拟证实了不同的骨架动力学,表明在连接二聚化和切割区域的双甘氨酸基序处存在弯曲运动,并检测到初始切割位点处的 H 键稳定性存在显著差异。我们的结果与关于底物切割的以下假设一致:首先,甘氨酸甘氨酸铰链可能将底物精确地定位在 γ-分泌酶内,使得其催化中心必须从已知的初始切割位点开始蛋白水解。其次,后续顺序蛋白水解形成的切割产物的比例可能受到不同程度的溶剂化和替代初始位点处 H 键稳定性的影响。第三,富含甘氨酸的结构域的灵活性可能通过降低二聚化区域的动力学和增加切割区域的 C 端部分的动力学来促进顺序蛋白水解过程中底物的运动。第四,二聚化可能通过降低二聚化区域的动力学和增加切割区域的 C 端部分的动力学来影响底物的处理。