Department of Statistics, University of California at Irvine, Irvine, CA 92697, USA.
Biostatistics. 2013 Jul;14(3):556-72. doi: 10.1093/biostatistics/kxs048. Epub 2012 Dec 23.
Assumptions regarding the true underlying genetic model, or mode of inheritance, are necessary when quantifying genetic associations with disease phenotypes. Here we propose new methods to ascertain the underlying genetic model from parental data in family-based association studies. Specifically, for parental mating-type data, we propose a novel statistic to test whether the underlying genetic model is additive, dominant, or recessive; for parental genotype-phenotype data, we propose three strategies to determine the true mode of inheritance. We illustrate how to incorporate the information gleaned from these strategies into family-based association tests. Because family-based association tests are conducted conditional on parental genotypes, the type I error rate of these procedures is not inflated by the information learned from parental data. This result holds even if such information is weak or when the assumption of Hardy-Weinberg equilibrium is violated. Our simulations demonstrate that incorporating parental data into family-based association tests can improve power under common inheritance models. The application of our proposed methods to a candidate-gene study of type 1 diabetes successfully detects a recessive effect in MGAT5 that would otherwise be missed by conventional family-based association tests.
在量化疾病表型与遗传关联性时,需要对真实潜在遗传模型或遗传方式做出假设。在这里,我们提出了从基于家族的关联研究中的父母数据中确定潜在遗传模型的新方法。具体来说,对于父母交配类型数据,我们提出了一种新的统计方法来检验潜在的遗传模型是加性、显性还是隐性的;对于父母基因型-表型数据,我们提出了三种策略来确定真实的遗传方式。我们说明了如何将从这些策略中获得的信息纳入基于家族的关联测试中。由于基于家族的关联测试是基于父母基因型进行的,因此这些程序的Ⅰ型错误率不会因从父母数据中获得的信息而膨胀。即使这种信息很弱,或者违反了 Hardy-Weinberg 平衡假设,这一结果仍然成立。我们的模拟表明,将父母数据纳入基于家族的关联测试可以在常见遗传模型下提高功效。我们提出的方法在 1 型糖尿病候选基因研究中的应用成功地检测到了 MGAT5 的隐性效应,如果不通过常规的基于家族的关联测试,这种效应将被遗漏。