LERMA, UMR 8112 du CNRS, de l'Observatoire de Paris et de l'Université de Cergy Pontoise, 5 mail Gay Lussac, 95000 Cergy Pontoise Cedex, France.
J Chem Phys. 2012 Dec 21;137(23):234706. doi: 10.1063/1.4771663.
The formation of the first monolayer of water molecules on bare dust grains is of primary importance to understand the growth of the icy mantles that cover dust in the interstellar medium. In this work, we explore experimentally the formation of water molecules from O(2) + D reaction on bare silicate surfaces that simulates the grains present in the diffuse interstellar clouds at visual extinctions (A(V) < 3 mag). For comparison, we also study the formation of water molecules on surfaces covered with amorphous water ice representing the dense clouds (A(V) ≥ 3 mag). Our studies focus on the formation of water molecules in the sub-monolayer and monolayer regimes using reflection absorption infrared spectroscopy and temperature-programmed desorption techniques. We provide the fractions of the products, such as D(2)O and D(2)O(2) molecules formed on three astrophysically relevant surfaces held at 10 K (amorphous olivine-type silicate, porous amorphous water ice, and nonporous amorphous water ice). Our results showed that the formation of D(2)O molecules occurs with an efficiency of about 55%-60% on nonporous amorphous water ice and about 18% on bare silicate grains surfaces. We explain the low efficiency of D(2)O water formation on the silicate surfaces by the desorption upon formation of certain products once the reaction occurs between O(2) and D atoms on the surface. A kinetic model taking into account the chemical desorption of newly formed water supports our conclusions.
水分子在裸露尘粒上形成的第一个单分子层对于理解覆盖星际介质中尘埃的冰幔的生长至关重要。在这项工作中,我们通过模拟在视觉消光(A(V) < 3 星等)下存在于弥漫星际云中的尘粒的裸露硅酸盐表面上的 O(2) + D 反应,实验探索了水分子的形成。为了进行比较,我们还研究了在代表密集云(A(V) ≥ 3 星等)的无定形水冰覆盖的表面上水分子的形成。我们的研究重点是使用反射吸收红外光谱和程序升温脱附技术在亚单层和单层范围内研究水分子的形成。我们提供了在三个天体物理相关的表面上形成的产物(如 D(2)O 和 D(2)O(2)分子)的分数,这些表面分别保持在 10 K(无定形橄榄石型硅酸盐、多孔无定形水冰和无孔无定形水冰)。我们的结果表明,在无孔无定形水冰上 D(2)O 分子的形成效率约为 55%-60%,而在裸露的硅酸盐颗粒表面上的形成效率约为 18%。我们通过在表面上的 O(2)和 D 原子之间发生反应后形成某些产物时的脱附,解释了在硅酸盐表面上水形成效率低的原因。考虑到新形成的水的化学脱附的动力学模型支持我们的结论。