Novartis Institutes for Biomedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH 4056 Basel, Switzerland.
J Chem Inf Model. 2013 Jan 28;53(1):201-9. doi: 10.1021/ci300425v. Epub 2012 Dec 27.
We validate an automated implementation of a combined Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method (VSGB 2.0 energy model) on a large and diverse selection of protein-ligand complexes (855 complexes). Although this data set is diverse with respect to both protein families and ligands, after carefully removing flawed structures, a significant correlation (R(2) = 0.63) between calculated and experimental binding affinities is obtained. Consistent explanations for "outlier" complexes are found. Visual analysis of the crystal structures and recourse to the original literature reveal that neglect of explicit solvent, ligand strain, and entropy contribute to the under- and overestimation of computed affinities. The limits of the Molecular Mechanics/Implicit Solvent approach to accurately estimate protein-ligand binding affinities is discussed as is the influence of the quality of protein-ligand complexes on computed free energy binding values.
我们验证了一种分子力学/广义 Born 表面积(MM/GBSA)方法(VSGB 2.0 能量模型)在大量不同的蛋白质-配体复合物(855 个复合物)上的自动实现。尽管该数据集在蛋白质家族和配体方面都具有多样性,但在仔细去除有缺陷的结构后,计算和实验结合亲和力之间得到了显著的相关性(R(2) = 0.63)。对于“异常值”复合物,找到了一致的解释。对晶体结构的可视化分析和对原始文献的查阅表明,忽视显溶剂、配体应变和熵会导致计算亲和力的低估和高估。还讨论了分子力学/隐溶剂方法准确估计蛋白质-配体结合亲和力的局限性,以及蛋白质-配体复合物的质量对计算自由能结合值的影响。