Al-Ostoot Fares Hezam, Akhileshwari P, Kameshwar Vivek Hamse, Geetha D V, Aljohani Majed S, Alharbi Hussam Y, Khanum Shaukath Ara, Sridhar M A
Department of Biochemistry, Faculty of Education & Science, Albaydha University, Albaydha, Yemen.
PG Department of Physics, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India.
Heliyon. 2024 Jul 2;10(13):e33814. doi: 10.1016/j.heliyon.2024.e33814. eCollection 2024 Jul 15.
This study explores the pharmacological potential of chalcones through a multidisciplinary approach, including synthesis, quantum theory, molecular electrostatics, and density functional theory (DFT) calculations. The synthesized compound, analyzed via single crystal X-ray diffraction, crystallized in the triclinic system (space group P-1) with C-H⋯O interactions stabilizing its structure. Hirshfeld surface analysis confirms these interactions, with H-H contacts dominating (45.1 %). Molecular electrostatics analysis reveals charge distribution, and a 3.10 eV HOMO-LUMO energy gap indicates bioactivity. Molecular docking identifies the compound () showed a maximum G of HTNF- (-9.81 kcal/mol); Tubulin (-7.96 kcal/mol); COX2 (-7.88 kcal/mol), EGFR (-6.72 kcal/mol), and VEGFR1(-2.50 kcal/mol). Where compound () showed maximum binding at the putative binding site with dock scores for VEGFR2 (-9.24 kcal/mol). This research not only advances molecular science but also holds promise for diverse applications, including drug design. The significance of this study lies in its comprehensive exploration of the pharmacological potential of chalcones using a multidisciplinary approach. Through the integration of synthesis, quantum theory, molecular electrostatics, and density functional theory (DFT) calculations, we have extensively explored the structural and biochemical characteristics of these compounds. This investigation has revealed valuable insights that have the potential to lead to significant advancements in the fields of molecular science and drug design. Moreover, the molecular docking studies shed light on the compound's interaction with various biological targets. The significant binding affinities observed for these targets underscore the potential therapeutic relevance of the synthesized compound in diverse disease conditions.
本研究通过多学科方法探索查耳酮的药理潜力,该方法包括合成、量子理论、分子静电学和密度泛函理论(DFT)计算。通过单晶X射线衍射分析的合成化合物,在三斜晶系(空间群P-1)中结晶,C-H⋯O相互作用稳定其结构。 Hirshfeld表面分析证实了这些相互作用,其中H-H接触占主导(45.1%)。分子静电学分析揭示了电荷分布,3.10 eV的HOMO-LUMO能隙表明具有生物活性。分子对接确定化合物()与HTNF-(-9.81 kcal/mol)、微管蛋白(-7.96 kcal/mol)、COX2(-7.88 kcal/mol)、表皮生长因子受体(EGFR,-6.72 kcal/mol)和血管内皮生长因子受体1(VEGFR1,-2.50 kcal/mol)表现出最大结合能。其中化合物()在假定结合位点与VEGFR2的对接分数显示出最大结合能(-9.24 kcal/mol)。本研究不仅推动了分子科学的发展,而且在包括药物设计在内的多种应用方面也具有前景。本研究的意义在于使用多学科方法全面探索查耳酮的药理潜力。通过整合合成、量子理论、分子静电学和密度泛函理论(DFT)计算,我们广泛探索了这些化合物的结构和生化特性。这项研究揭示了有价值的见解,有可能在分子科学和药物设计领域取得重大进展。此外,分子对接研究揭示了该化合物与各种生物靶点的相互作用。这些靶点观察到的显著结合亲和力强调了合成化合物在多种疾病条件下潜在的治疗相关性。