Nankai-Baidu Joint Laboratory, College of Information Technical Science, Nankai University, Tianjin, China.
PLoS One. 2012;7(12):e50093. doi: 10.1371/journal.pone.0050093. Epub 2012 Dec 18.
A motif in a network is a connected graph that occurs significantly more frequently as an induced subgraph than would be expected in a similar randomized network. By virtue of being atypical, it is thought that motifs might play a more important role than arbitrary subgraphs. Recently, a flurry of advances in the study of network motifs has created demand for faster computational means for identifying motifs in increasingly larger networks. Motif detection is typically performed by enumerating subgraphs in an input network and in an ensemble of comparison networks; this poses a significant computational problem. Classifying the subgraphs encountered, for instance, is typically performed using a graph canonical labeling package, such as Nauty, and will typically be called billions of times. In this article, we describe an implementation of a network motif detection package, which we call NetMODE. NetMODE can only perform motif detection for [Formula: see text]-node subgraphs when [Formula: see text], but does so without the use of Nauty. To avoid using Nauty, NetMODE has an initial pretreatment phase, where [Formula: see text]-node graph data is stored in memory ([Formula: see text]). For [Formula: see text] we take a novel approach, which relates to the Reconstruction Conjecture for directed graphs. We find that NetMODE can perform up to around [Formula: see text] times faster than its predecessors when [Formula: see text] and up to around [Formula: see text] times faster when [Formula: see text] (the exact improvement varies considerably). NetMODE also (a) includes a method for generating comparison graphs uniformly at random, (b) can interface with external packages (e.g. R), and (c) can utilize multi-core architectures. NetMODE is available from netmode.sf.net.
网络中的模体是指作为诱导子图出现的连通图,其出现的频率明显高于在类似随机网络中预期的频率。由于其非典型性,人们认为模体可能比任意子图发挥更重要的作用。最近,网络模体研究的一系列进展,对在越来越大的网络中识别模体的更快计算方法提出了需求。模体检测通常通过枚举输入网络和比较网络集合中的子图来完成;这构成了一个重大的计算问题。例如,对遇到的子图进行分类通常使用图正则化标记包(如 Nauty)来完成,并且通常会被调用数十亿次。在本文中,我们描述了一种网络模体检测包的实现,我们称之为 NetMODE。当 [Formula: see text] 时,NetMODE 只能对 [Formula: see text]-节点子图进行模体检测,但不使用 Nauty。为了避免使用 Nauty,NetMODE 具有初始预处理阶段,其中将 [Formula: see text]-节点图数据存储在内存中([Formula: see text])。对于 [Formula: see text],我们采用了一种新颖的方法,它与有向图的重建猜想有关。我们发现,当 [Formula: see text] 时,NetMODE 的速度可以比其前身快约 [Formula: see text] 倍,当 [Formula: see text] 时可以快约 [Formula: see text] 倍(具体的改进幅度差异很大)。NetMODE 还具有以下特点:(a) 具有生成均匀随机比较图的方法;(b) 可以与外部软件包(如 R)接口;(c) 可以利用多核架构。NetMODE 可从 netmode.sf.net 获得。