Suppr超能文献

基于鲁棒优化的统一分类模型。

A unified classification model based on robust optimization.

机构信息

Department of Administration Engineering, Keio University, Kouhoku, Yokohama, Kanagawa 223-8522, Japan.

出版信息

Neural Comput. 2013 Mar;25(3):759-804. doi: 10.1162/NECO_a_00412. Epub 2012 Dec 28.

Abstract

A wide variety of machine learning algorithms such as the support vector machine (SVM), minimax probability machine (MPM), and Fisher discriminant analysis (FDA) exist for binary classification. The purpose of this letter is to provide a unified classification model that includes these models through a robust optimization approach. This unified model has several benefits. One is that the extensions and improvements intended for SVMs become applicable to MPM and FDA, and vice versa. For example, we can obtain nonconvex variants of MPM and FDA by mimicking Perez-Cruz, Weston, Hermann, and Schölkopf's (2003) extension from convex ν-SVM to nonconvex Eν-SVM. Another benefit is to provide theoretical results concerning these learning methods at once by dealing with the unified model. We give a statistical interpretation of the unified classification model and prove that the model is a good approximation for the worst-case minimization of an expected loss with respect to the uncertain probability distribution. We also propose a nonconvex optimization algorithm that can be applied to nonconvex variants of existing learning methods and show promising numerical results.

摘要

存在许多用于二分类的机器学习算法,例如支持向量机 (SVM)、最小最大概率机 (MPM) 和 Fisher 判别分析 (FDA)。本文的目的是通过稳健优化方法提供一个包含这些模型的统一分类模型。该统一模型具有多个优点。其一,旨在 SVM 上的扩展和改进也适用于 MPM 和 FDA,反之亦然。例如,我们可以通过模仿 Pérez-Cruz、Weston、Hermann 和 Schölkopf (2003) 从凸 ν-SVM 到非凸 Eν-SVM 的扩展,得到 MPM 和 FDA 的非凸变体。另一个优点是通过处理统一模型,立即为这些学习方法提供理论结果。我们对统一分类模型进行了统计解释,并证明该模型是在不确定概率分布下对期望损失最小化的最坏情况的良好逼近。我们还提出了一种非凸优化算法,可应用于现有学习方法的非凸变体,并展示了有希望的数值结果。

相似文献

1
A unified classification model based on robust optimization.
Neural Comput. 2013 Mar;25(3):759-804. doi: 10.1162/NECO_a_00412. Epub 2012 Dec 28.
2
Extended robust support vector machine based on financial risk minimization.
Neural Comput. 2014 Nov;26(11):2541-69. doi: 10.1162/NECO_a_00647. Epub 2014 Jul 24.
3
Nonconvex online support vector machines.
IEEE Trans Pattern Anal Mach Intell. 2011 Feb;33(2):368-81. doi: 10.1109/TPAMI.2010.109.
4
Robust support vector machine-trained fuzzy system.
Neural Netw. 2014 Feb;50:154-65. doi: 10.1016/j.neunet.2013.11.013. Epub 2013 Nov 21.
5
DC Algorithm for Extended Robust Support Vector Machine.
Neural Comput. 2017 May;29(5):1406-1438. doi: 10.1162/NECO_a_00958. Epub 2017 Mar 23.
6
Using financial risk measures for analyzing generalization performance of machine learning models.
Neural Netw. 2014 Sep;57:29-38. doi: 10.1016/j.neunet.2014.05.006. Epub 2014 May 27.
7
Arbitrary norm support vector machines.
Neural Comput. 2009 Feb;21(2):560-82. doi: 10.1162/neco.2008.12-07-667.
8
Gene selection using support vector machines with non-convex penalty.
Bioinformatics. 2006 Jan 1;22(1):88-95. doi: 10.1093/bioinformatics/bti736. Epub 2005 Oct 25.
10
Probability estimation with machine learning methods for dichotomous and multicategory outcome: theory.
Biom J. 2014 Jul;56(4):534-63. doi: 10.1002/bimj.201300068. Epub 2014 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验