Department of Administration Engineering, Keio University, Kouhoku, Yokohama, Kanagawa 223-8522, Japan.
Neural Comput. 2013 Mar;25(3):759-804. doi: 10.1162/NECO_a_00412. Epub 2012 Dec 28.
A wide variety of machine learning algorithms such as the support vector machine (SVM), minimax probability machine (MPM), and Fisher discriminant analysis (FDA) exist for binary classification. The purpose of this letter is to provide a unified classification model that includes these models through a robust optimization approach. This unified model has several benefits. One is that the extensions and improvements intended for SVMs become applicable to MPM and FDA, and vice versa. For example, we can obtain nonconvex variants of MPM and FDA by mimicking Perez-Cruz, Weston, Hermann, and Schölkopf's (2003) extension from convex ν-SVM to nonconvex Eν-SVM. Another benefit is to provide theoretical results concerning these learning methods at once by dealing with the unified model. We give a statistical interpretation of the unified classification model and prove that the model is a good approximation for the worst-case minimization of an expected loss with respect to the uncertain probability distribution. We also propose a nonconvex optimization algorithm that can be applied to nonconvex variants of existing learning methods and show promising numerical results.
存在许多用于二分类的机器学习算法,例如支持向量机 (SVM)、最小最大概率机 (MPM) 和 Fisher 判别分析 (FDA)。本文的目的是通过稳健优化方法提供一个包含这些模型的统一分类模型。该统一模型具有多个优点。其一,旨在 SVM 上的扩展和改进也适用于 MPM 和 FDA,反之亦然。例如,我们可以通过模仿 Pérez-Cruz、Weston、Hermann 和 Schölkopf (2003) 从凸 ν-SVM 到非凸 Eν-SVM 的扩展,得到 MPM 和 FDA 的非凸变体。另一个优点是通过处理统一模型,立即为这些学习方法提供理论结果。我们对统一分类模型进行了统计解释,并证明该模型是在不确定概率分布下对期望损失最小化的最坏情况的良好逼近。我们还提出了一种非凸优化算法,可应用于现有学习方法的非凸变体,并展示了有希望的数值结果。