Fujiwara Shuhei, Takeda Akiko, Kanamori Takafumi
TOPGATE Co., Bunkyo-ku, Tokyo, 113-0033, Japan
Department of Mathematical Analysis and Statistical Inference, Institute of Statistical Mathematics, Tachikawa, Tokyo 190-8562, Japan; and RIKEN Center for Advanced Intelligence Project, 1-4-1, Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
Neural Comput. 2017 May;29(5):1406-1438. doi: 10.1162/NECO_a_00958. Epub 2017 Mar 23.
Nonconvex variants of support vector machines (SVMs) have been developed for various purposes. For example, robust SVMs attain robustness to outliers by using a nonconvex loss function, while extended [Formula: see text]-SVM (E[Formula: see text]-SVM) extends the range of the hyperparameter by introducing a nonconvex constraint. Here, we consider an extended robust support vector machine (ER-SVM), a robust variant of E[Formula: see text]-SVM. ER-SVM combines two types of nonconvexity from robust SVMs and E[Formula: see text]-SVM. Because of the two nonconvexities, the existing algorithm we proposed needs to be divided into two parts depending on whether the hyperparameter value is in the extended range or not. The algorithm also heuristically solves the nonconvex problem in the extended range. In this letter, we propose a new, efficient algorithm for ER-SVM. The algorithm deals with two types of nonconvexity while never entailing more computations than either E[Formula: see text]-SVM or robust SVM, and it finds a critical point of ER-SVM. Furthermore, we show that ER-SVM includes the existing robust SVMs as special cases. Numerical experiments confirm the effectiveness of integrating the two nonconvexities.
支持向量机(SVM)的非凸变体已被开发用于各种目的。例如,鲁棒支持向量机通过使用非凸损失函数来实现对异常值的鲁棒性,而扩展的[公式:见原文]-支持向量机(E[公式:见原文]-SVM)通过引入非凸约束来扩展超参数的范围。在此,我们考虑扩展鲁棒支持向量机(ER-SVM),它是E[公式:见原文]-SVM的一种鲁棒变体。ER-SVM结合了来自鲁棒支持向量机和E[公式:见原文]-SVM的两种非凸性。由于这两种非凸性,我们提出的现有算法需要根据超参数值是否在扩展范围内分为两部分。该算法还通过启发式方法解决扩展范围内的非凸问题。在这封信中,我们为ER-SVM提出了一种新的高效算法。该算法处理两种非凸性,同时所需的计算量从不超过E[公式:见原文]-SVM或鲁棒支持向量机,并且它找到了ER-SVM的一个临界点。此外,我们表明ER-SVM将现有的鲁棒支持向量机作为特殊情况包含在内。数值实验证实了整合这两种非凸性的有效性。