Suppr超能文献

声音的光谱组成对猫定位声源的作用。

The role of spectral composition of sounds on the localization of sound sources by cats.

机构信息

Dept. of Physiology and Biophysics, Univ. of Colorado School of Medicine, Aurora, CO 80045, USA.

出版信息

J Neurophysiol. 2013 Mar;109(6):1658-68. doi: 10.1152/jn.00358.2012. Epub 2012 Dec 28.

Abstract

Sound localization along the azimuthal dimension depends on interaural time and level disparities, whereas localization in elevation depends on broadband power spectra resulting from the filtering properties of the head and pinnae. We trained cats with their heads unrestrained, using operant conditioning to indicate the apparent locations of sounds via gaze shift. Targets consisted of broadband (BB), high-pass (HP), or low-pass (LP) noise, tones from 0.5 to 14 kHz, and 1/6 octave narrow-band (NB) noise with center frequencies ranging from 6 to 16 kHz. For each sound type, localization performance was summarized by the slope of the regression relating actual gaze shift to desired gaze shift. Overall localization accuracy for BB noise was comparable in azimuth and in elevation but was markedly better in azimuth than in elevation for sounds with limited spectra. Gaze shifts to targets in azimuth were most accurate to BB, less accurate for HP, LP, and NB sounds, and considerably less accurate for tones. In elevation, cats were most accurate in localizing BB, somewhat less accurate to HP, and less yet to LP noise (although still with slopes ∼0.60), but they localized NB noise much worse and were unable to localize tones. Deterioration of localization as bandwidth narrows is consistent with the hypothesis that spectral information is critical for sound localization in elevation. For NB noise or tones in elevation, unlike humans, most cats did not have unique responses at different frequencies, and some appeared to respond with a "default" location at all frequencies.

摘要

方位角上的声音定位取决于两耳间的时间和强度差异,而仰角上的定位则取决于头部和耳廓的滤波特性产生的宽带功率谱。我们在不限制猫头部活动的情况下对其进行训练,使用操作性条件反射让它们通过眼球转动来指示声音的明显位置。目标包括宽带(BB)、高通(HP)或低通(LP)噪声、0.5 至 14 kHz 的音调以及中心频率在 6 至 16 kHz 之间的 1/6 倍频程窄带(NB)噪声。对于每种声音类型,通过实际眼球转动与期望眼球转动之间的回归斜率来总结定位性能。对于 BB 噪声,方位角和仰角的定位准确性相当,但对于频谱有限的声音,方位角的定位准确性明显优于仰角。对于方位角上的目标,眼球转动最准确的是 BB,其次是 HP、LP 和 NB 声音,而对于音调,准确性则明显降低。在仰角上,猫对 BB 的定位最准确,对 HP 的定位稍差,对 LP 噪声的定位更差(尽管斜率仍约为 0.60),但对 NB 噪声的定位则更差,而且无法定位音调。随着带宽变窄,定位性能恶化与这样一种假设一致,即频谱信息对于仰角上的声音定位至关重要。对于 NB 噪声或音调,与人类不同,大多数猫在不同频率下没有独特的反应,有些猫似乎在所有频率下都以“默认”位置做出反应。

相似文献

1
The role of spectral composition of sounds on the localization of sound sources by cats.
J Neurophysiol. 2013 Mar;109(6):1658-68. doi: 10.1152/jn.00358.2012. Epub 2012 Dec 28.
2
Effects of forward masking on sound localization in cats: basic findings with broadband maskers.
J Neurophysiol. 2013 Oct;110(7):1600-10. doi: 10.1152/jn.00255.2013. Epub 2013 Jul 10.
3
Influence of head position on the spatial representation of acoustic targets.
J Neurophysiol. 1999 Jun;81(6):2720-36. doi: 10.1152/jn.1999.81.6.2720.
4
Spectral cues explain illusory elevation effects with stereo sounds in cats.
J Neurophysiol. 2003 Jul;90(1):525-30. doi: 10.1152/jn.00107.2003.
5
Behavioral and modeling studies of sound localization in cats: effects of stimulus level and duration.
J Neurophysiol. 2013 Aug;110(3):607-20. doi: 10.1152/jn.01019.2012. Epub 2013 May 8.
6
Behavior and modeling of two-dimensional precedence effect in head-unrestrained cats.
J Neurophysiol. 2015 Aug;114(2):1272-85. doi: 10.1152/jn.00214.2015. Epub 2015 Jul 1.
7
Sound orientation behavior in cats. II. Mid-frequency spectral cues for sound localization.
J Acoust Soc Am. 1996 Aug;100(2 Pt 1):1070-80. doi: 10.1121/1.416293.
8
Behavioral studies of sound localization in the cat.
J Neurosci. 1998 Mar 15;18(6):2147-60. doi: 10.1523/JNEUROSCI.18-06-02147.1998.
10
Sound-localization performance in the cat: the effect of restraining the head.
J Neurophysiol. 2005 Mar;93(3):1223-34. doi: 10.1152/jn.00747.2004. Epub 2004 Oct 13.

引用本文的文献

1
The interference of tinnitus on sound localization was related to the type of stimulus.
Front Neurosci. 2023 Feb 7;17:1077455. doi: 10.3389/fnins.2023.1077455. eCollection 2023.
2
Cortical mechanisms of spatial hearing.
Nat Rev Neurosci. 2019 Oct;20(10):609-623. doi: 10.1038/s41583-019-0206-5. Epub 2019 Aug 29.
3
Localization of complex sounds is modulated by behavioral relevance and sound category.
J Acoust Soc Am. 2017 Oct;142(4):1757. doi: 10.1121/1.5003779.
4
Mechanisms of Sound Localization in Two Functionally Distinct Regions of the Auditory Cortex.
J Neurosci. 2015 Dec 9;35(49):16105-15. doi: 10.1523/JNEUROSCI.2563-15.2015.
5
Encoding audio motion: spatial impairment in early blind individuals.
Front Psychol. 2015 Sep 7;6:1357. doi: 10.3389/fpsyg.2015.01357. eCollection 2015.
6
Dynamic sound localization in cats.
J Neurophysiol. 2015 Aug;114(2):958-68. doi: 10.1152/jn.00105.2015. Epub 2015 Jun 10.
7
Crossmodal plasticity and hearing capabilities following blindness.
Cell Tissue Res. 2015 Jul;361(1):295-300. doi: 10.1007/s00441-015-2175-y. Epub 2015 Apr 18.
8
Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
Front Neural Circuits. 2014 Dec 16;8:144. doi: 10.3389/fncir.2014.00144. eCollection 2014.
9
The precedence effect in sound localization.
J Assoc Res Otolaryngol. 2015 Feb;16(1):1-28. doi: 10.1007/s10162-014-0496-2. Epub 2014 Dec 6.
10
The acoustical cues to sound location in the guinea pig (Cavia porcellus).
Hear Res. 2014 Oct;316:1-15. doi: 10.1016/j.heares.2014.07.004. Epub 2014 Jul 19.

本文引用的文献

1
Short-latency, goal-directed movements of the pinnae to sounds that produce auditory spatial illusions.
J Neurophysiol. 2010 Jan;103(1):446-57. doi: 10.1152/jn.00793.2009. Epub 2009 Nov 4.
3
Loudness perception in the domestic cat: reaction time estimates of equal loudness contours and recruitment effects.
J Assoc Res Otolaryngol. 2009 Jun;10(2):295-308. doi: 10.1007/s10162-009-0157-z. Epub 2009 Feb 7.
4
Double dissociation of 'what' and 'where' processing in auditory cortex.
Nat Neurosci. 2008 May;11(5):609-16. doi: 10.1038/nn.2108. Epub 2008 Apr 13.
5
Sound localization behavior in ferrets: comparison of acoustic orientation and approach-to-target responses.
Neuroscience. 2008 Jun 12;154(1):397-408. doi: 10.1016/j.neuroscience.2007.12.022. Epub 2007 Dec 23.
6
Can measures of sound localization acuity be related to the precision of absolute location estimates?
Hear Res. 2008 Apr;238(1-2):94-109. doi: 10.1016/j.heares.2007.11.006. Epub 2007 Nov 28.
8
The sound-localization ability of cats.
J Neurophysiol. 2005 Nov;94(5):3653; author reply 3653-5. doi: 10.1152/jn.00720.2005.
9
Sound-localization performance in the cat: the effect of restraining the head.
J Neurophysiol. 2005 Mar;93(3):1223-34. doi: 10.1152/jn.00747.2004. Epub 2004 Oct 13.
10
Auditory spatial resolution in horizontal, vertical, and diagonal planes.
J Acoust Soc Am. 2003 Aug;114(2):1009-22. doi: 10.1121/1.1590970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验