Suppr超能文献

Ds bM,一种新型二硫键氧化还原酶,通过 OxyR 调控的反应影响铜绿假单胞菌对氨基糖苷类药物的耐药性。

DsbM, a novel disulfide oxidoreductase affects aminoglycoside resistance in Pseudomonas aeruginosa by OxyR-regulated response.

机构信息

State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.

出版信息

J Microbiol. 2012 Dec;50(6):932-8. doi: 10.1007/s12275-012-2177-3. Epub 2012 Dec 30.

Abstract

A Pseudomonas aeruginosa mutant strain M122 was isolated from a Mu transposon insertion mutant library. In our prophase research, we have found that PA0058, a novel gene encodes a 234-residue conserved protein, was disrupted in the M122 mutant. In this study, the bacteriostatic experiment in vitro indicates that M122 has abnormally high aminoglycoside resistance. We expressed PA0058 in E. coli and found that PA0058 oxidizes and reduces disulfide. This biochemical characterization suggests that PA0058 is a novel disulfide oxidoreductase. Hence, the protein was designated as DsbM. Microarray analysis of the M122 mutant showed its unusual phenotype might be related to the bacterial antioxidant defense system mediated by the oxyR regulon. Meanwhile, we detected -SH content in the periplasm of M122 and wild strain and found a lower -SH/S-S ratio in M122. Therefore, we consider that the loss of dsbM function decreased the -SH/S-S ratio, which then prolongs the OxyR-regulated response, thereby conferring high aminoglycoside resistance to the M122 mutant strain. Our findings have important implications for understanding the mechanisms underlying aminoglycoside resistance in P. aeruginosa.

摘要

一株假单胞菌突变株 M122 是从 Mu 转座子插入突变文库中分离得到的。在前期研究中,我们发现 M122 突变体中缺失了一个新型基因 PA0058,该基因编码一个由 234 个残基组成的保守蛋白。在本研究中,体外抑菌实验表明 M122 对氨基糖苷类药物具有异常高的耐药性。我们在大肠杆菌中表达了 PA0058,发现 PA0058 能够氧化和还原二硫键。这种生化特性表明 PA0058 是一种新型的二硫键氧化还原酶。因此,该蛋白被命名为 DsbM。M122 突变体的微阵列分析表明,其异常表型可能与 oxyR 调控子介导的细菌抗氧化防御系统有关。同时,我们检测了 M122 和野生型菌株周质中的 -SH 含量,发现 M122 中的 -SH/S-S 比值较低。因此,我们认为 dsbM 功能的丧失降低了 -SH/S-S 比值,从而延长了 OxyR 调控的反应时间,从而赋予 M122 突变株对氨基糖苷类药物的高度耐药性。我们的研究结果对于理解铜绿假单胞菌中氨基糖苷类药物耐药的机制具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验