Suhasini Avvaru N, Brosh Robert M
Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Drive, Baltimore, MD 21224, USA.
Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Drive, Baltimore, MD 21224, USA.
Mutat Res. 2013 Apr-Jun;752(2):138-152. doi: 10.1016/j.mrrev.2012.12.004. Epub 2012 Dec 28.
Helicases have important roles in nucleic acid metabolism, and their prominence is marked by the discovery of genetic disorders arising from disease-causing mutations. Missense mutations can yield unique insight to molecular functions and basis for disease pathology. XPB or XPD missense mutations lead to Xeroderma pigmentosum, Cockayne's syndrome, Trichothiodystrophy, or COFS syndrome, suggesting that DNA repair and transcription defects are responsible for clinical heterogeneity. Complex phenotypes are also observed for RECQL4 helicase mutations responsible for Rothmund-Thomson syndrome, Baller-Gerold syndrome, or RAPADILINO. Bloom's syndrome causing missense mutations are found in the conserved helicase and RecQ C-terminal domain of BLM that interfere with helicase function. Although rare, patient-derived missense mutations in the exonuclease or helicase domain of Werner syndrome protein exist. Characterization of WRN separation-of-function mutants may provide insight to catalytic requirements for suppression of phenotypes associated with the premature aging disorder. Characterized FANCJ missense mutations associated with breast cancer or Fanconi anemia interfere with FANCJ helicase activity required for DNA repair and the replication stress response. For example, a FA patient-derived mutation in the FANCJ Iron-Sulfur domain was shown to uncouple its ATPase and translocase activity from DNA unwinding. Mutations in DDX11 (ChlR1) are responsible for Warsaw Breakage syndrome, a recently discovered autosomal recessive cohesinopathy. Ongoing and future studies will address clinically relevant helicase mutations and polymorphisms, including those that interfere with key protein interactions or exert dominant negative phenotypes (e.g., certain mutant alleles of Twinkle mitochondrial DNA helicase). Chemical rescue may be an approach to restore helicase activity in loss-of-function helicase disorders. Genetic and biochemical analyses of disease-causing missense mutations in human helicase disorders have led to new insights to the molecular defects underlying aberrant cellular and clinical phenotypes.
解旋酶在核酸代谢中发挥着重要作用,致病突变导致的遗传疾病的发现凸显了它们的重要性。错义突变能够为分子功能及疾病病理学基础提供独特见解。XPB或XPD错义突变会导致着色性干皮病、科凯恩综合征、毛发硫营养不良或COFS综合征,这表明DNA修复和转录缺陷是临床异质性的原因。对于与罗思蒙德 - 汤姆森综合征、巴勒 - 杰罗尔德综合征或拉帕迪利诺综合征相关的RECQL4解旋酶突变,也观察到了复杂的表型。导致布卢姆综合征的错义突变存在于BLM的保守解旋酶和RecQ C末端结构域中,这些突变会干扰解旋酶功能。虽然罕见,但在沃纳综合征蛋白的核酸外切酶或解旋酶结构域中存在患者来源的错义突变。对WRN功能分离突变体的表征可能有助于深入了解抑制与早衰性疾病相关表型所需的催化条件。已表征的与乳腺癌或范科尼贫血相关的FANCJ错义突变会干扰DNA修复和复制应激反应所需的FANCJ解旋酶活性。例如,在FANCJ铁硫结构域中一个来自范科尼贫血患者的突变被证明使其ATP酶和转位酶活性与DNA解旋脱钩。DDX11(ChlR1)中的突变是华沙断裂综合征的病因,这是一种最近发现的常染色体隐性粘连蛋白病。正在进行的和未来的研究将关注临床相关的解旋酶突变和多态性,包括那些干扰关键蛋白相互作用或表现出显性负性表型的突变(例如,Twinkle线粒体DNA解旋酶的某些突变等位基因)。化学挽救可能是恢复功能丧失性解旋酶疾病中解旋酶活性的一种方法。对人类解旋酶疾病中致病错义突变的遗传和生化分析为异常细胞和临床表型背后的分子缺陷带来了新的见解。