Departamento de Física, Universidade do Estado de Santa Catarina, 89219-710 Joinville, Brazil.
Chaos. 2012 Dec;22(4):043147. doi: 10.1063/1.4772968.
We investigate periodicity suppression by an external periodic forcing in different flows, each modeled by a set of three autonomous nonlinear first-order ordinary differential equations. By varying the amplitude of a sinusoidal forcing with a fixed angular frequency, we show through numerical simulations, including parameter planes plots, phase-space portraits, and the largest Lyapunov exponent, that windows of periodicity embedded in chaotic regions may be totally suppressed.
我们研究了不同流场中外部周期性强迫对周期的抑制作用,每个流场都由一组三个自治非线性一阶常微分方程来建模。通过改变具有固定角频率的正弦强迫的幅度,我们通过数值模拟,包括参数平面图、相空间图和最大 Lyapunov 指数,表明嵌入混沌区域的周期窗口可能会被完全抑制。