Suppr超能文献

在初级保健中识别未检出的肾脏肿瘤患者:QCancer®(肾脏)预测模型的独立和外部验证。

Identifying patients with undetected renal tract cancer in primary care: an independent and external validation of QCancer® (Renal) prediction model.

机构信息

Centre for Statistics in Medicine, Wolfson College Annexe, University of Oxford, Linton Road, Oxford OX2 6UD, UK.

出版信息

Cancer Epidemiol. 2013 Apr;37(2):115-20. doi: 10.1016/j.canep.2012.11.005. Epub 2012 Dec 29.

Abstract

INTRODUCTION

To evaluate the performance of QCancer® (Renal) for predicting the absolute risk of renal tract cancer in a large independent UK cohort of patients from general practice records.

MATERIALS AND METHODS

Open cohort study to validate QCancer® (Renal) prediction model. Record from 365 practices from United Kingdom contributing to The Health Improvement Network (THIN) database. 2.1 million patients registered with a general practice surgery between 01 January 2000 and 30 June 2008, aged 30-84 years (3.7 million person years) with 2283 renal tract cancer cases. Renal tract cancer was defined as incident diagnosis of renal tract cancer during the 2 years after study entry. Model discrimination was measured using the receiver operating characteristics derived area under the curve. Calibration plots examined the relationship between predicted and observed probabilities of undetected renal tract cancer.

RESULTS

The results from this independent and external validation of QCancer® (Renal) demonstrated good performance data on a large cohort of general practice patients. QCancer® (Renal) had very good discrimination with areas under the ROC curve of 0.92 and 0.95 for women and men respectively. QCancer® (Renal) was well calibrated across all tenths of risk and over all age ranges with predicted risks closely matching observed risks. QCancer® (Renal) explained 74.4% and 74.2% of the variation in men and women respectively. A limitation of our study is the recording of symptoms might be less complete, as patients with mild symptoms may not visit their general practitioner or not report mild symptoms.

CONCLUSIONS

QCancer® (Renal) are useful tools to help in identifying undetected cases of undiagnosed renal tract cancer in primary care in the UK.

摘要

简介

评估 QCancer®(肾脏)在英国大型普通实践队列中预测肾脏肿瘤绝对风险的性能。

材料与方法

对 QCancer®(肾脏)预测模型进行开放性队列研究验证。来自英国的 365 家实践记录,参与了健康改善网络(THIN)数据库。2000 年 1 月 1 日至 2008 年 6 月 30 日期间,有 2283 例肾脏肿瘤病例,共有 210 万患者在普通外科手术登记,年龄在 30-84 岁(370 万人年)。肾脏肿瘤的定义为研究入组后 2 年内诊断为肾脏肿瘤的新发病例。使用接收者操作特征曲线下面积来衡量模型的区分度。校准图检查了未检测到的肾脏肿瘤的预测概率与观察概率之间的关系。

结果

这项对 QCancer®(肾脏)的独立外部验证结果在大型普通实践患者队列中表现出了良好的性能数据。在女性和男性中,QCancer®(肾脏)的 ROC 曲线下面积分别为 0.92 和 0.95,表明其具有非常好的区分度。在所有风险十分之数和所有年龄范围内,QCancer®(肾脏)都得到了很好的校准,预测风险与观察风险非常吻合。QCancer®(肾脏)分别解释了男性和女性中 74.4%和 74.2%的变化。我们研究的一个局限性是记录的症状可能不够完整,因为有轻微症状的患者可能不会去看他们的全科医生或不报告轻微症状。

结论

在英国的初级保健中,QCancer®(肾脏)是帮助识别未诊断的肾脏肿瘤的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验