Tibotec-Virco, Beerse, Belgium.
Virol J. 2013 Jan 3;10:8. doi: 10.1186/1743-422X-10-8.
Integrase inhibitors (INI) form a new drug class in the treatment of HIV-1 patients. We developed a linear regression modeling approach to make a quantitative raltegravir (RAL) resistance phenotype prediction, as Fold Change in IC50 against a wild type virus, from mutations in the integrase genotype.
We developed a clonal genotype-phenotype database with 991 clones from 153 clinical isolates of INI naïve and RAL treated patients, and 28 site-directed mutants.We did the development of the RAL linear regression model in two stages, employing a genetic algorithm (GA) to select integrase mutations by consensus. First, we ran multiple GAs to generate first order linear regression models (GA models) that were stochastically optimized to reach a goal R2 accuracy, and consisted of a fixed-length subset of integrase mutations to estimate INI resistance. Secondly, we derived a consensus linear regression model in a forward stepwise regression procedure, considering integrase mutations or mutation pairs by descending prevalence in the GA models.
The most frequently occurring mutations in the GA models were 92Q, 97A, 143R and 155H (all 100%), 143G (90%), 148H/R (89%), 148K (88%), 151I (81%), 121Y (75%), 143C (72%), and 74M (69%). The RAL second order model contained 30 single mutations and five mutation pairs (p < 0.01): 143C/R&97A, 155H&97A/151I and 74M&151I. The R2 performance of this model on the clonal training data was 0.97, and 0.78 on an unseen population genotype-phenotype dataset of 171 clinical isolates from RAL treated and INI naïve patients.
We describe a systematic approach to derive a model for predicting INI resistance from a limited amount of clonal samples. Our RAL second order model is made available as an Additional file for calculating a resistance phenotype as the sum of integrase mutations and mutation pairs.
整合酶抑制剂(INI)是治疗 HIV-1 患者的一种新型药物类别。我们开发了一种线性回归建模方法,通过整合酶基因型中的突变,对拉替拉韦(RAL)耐药表型进行定量预测,即相对于野生型病毒的 IC50 变化倍数。
我们开发了一个克隆基因型-表型数据库,其中包含 153 例 INI 初治和 RAL 治疗患者的 153 例临床分离株的 991 个克隆和 28 个定点突变体。我们分两个阶段开发 RAL 线性回归模型,使用遗传算法(GA)根据共识选择整合酶突变。首先,我们运行多个 GA 生成一阶线性回归模型(GA 模型),这些模型通过随机优化达到目标 R2 准确性,并且包含估计 INI 耐药性的固定长度整合酶突变子集。其次,我们通过降序考虑 GA 模型中最常见的整合酶突变或突变对,在逐步回归过程中推导出共识线性回归模型。
GA 模型中最常见的突变是 92Q、97A、143R 和 155H(均为 100%)、143G(90%)、148H/R(89%)、148K(88%)、151I(81%)、121Y(75%)、143C(72%)和 74M(69%)。RAL 二阶模型包含 30 个单突变和五个突变对(p < 0.01):143C/R&97A、155H&97A/151I 和 74M&151I。该模型在克隆训练数据上的 R2 性能为 0.97,在未经治疗的 RAL 和 INI 初治患者的 171 例临床分离株的未见人群基因型-表型数据集上为 0.78。
我们描述了一种从有限数量的克隆样本中推导预测 INI 耐药性模型的系统方法。我们的 RAL 二阶模型作为一个附加文件提供,用于计算整合酶突变和突变对的总和作为耐药表型。