Suppr超能文献

鸣禽精子结构与能量学的进化。

Evolution of sperm structure and energetics in passerine birds.

机构信息

Natural History Museum, University of Oslo, 0318 Oslo, Norway.

出版信息

Proc Biol Sci. 2013 Jan 2;280(1753):20122616. doi: 10.1098/rspb.2012.2616. Print 2013 Feb 22.

Abstract

Spermatozoa exhibit considerable interspecific variability in size and shape. Our understanding of the adaptive significance of this diversity, however, remains limited. Determining how variation in sperm structure translates into variation in sperm performance will contribute to our understanding of the evolutionary diversification of sperm form. Here, using data from passerine birds, we test the hypothesis that longer sperm swim faster because they have more available energy. We found that sperm with longer midpieces have higher levels of intracellular adenosine triphosphate (ATP), but that greater energy reserves do not translate into faster-swimming sperm. Additionally, we found that interspecific variation in sperm ATP concentration is not associated with the level of sperm competition faced by males. Finally, using Bayesian methods, we compared the evolutionary trajectories of sperm morphology and ATP content, and show that both traits have undergone directional evolutionary change. However, in contrast to recent suggestions in other taxa, we show that changes in ATP are unlikely to have preceded changes in morphology in passerine sperm. These results suggest that variable selective pressures are likely to have driven the evolution of sperm traits in different taxa, and highlight fundamental biological differences between taxa with internal and external fertilization, as well as those with and without sperm storage.

摘要

精子在大小和形状上表现出相当大的种间变异性。然而,我们对这种多样性的适应意义的理解仍然有限。确定精子结构的变化如何转化为精子性能的变化,将有助于我们理解精子形态的进化多样化。在这里,我们使用雀形目鸟类的数据来检验这样一个假设,即较长的精子游得更快,因为它们有更多的可用能量。我们发现,中段较长的精子具有更高水平的细胞内三磷酸腺苷(ATP),但更多的能量储备并不意味着游泳速度更快的精子。此外,我们还发现,精子中 ATP 浓度的种间变异与雄性面临的精子竞争水平无关。最后,我们使用贝叶斯方法比较了精子形态和 ATP 含量的进化轨迹,并表明这两个特征都经历了定向进化变化。然而,与其他分类群中最近的建议相反,我们表明,在雀形目精子中,ATP 的变化不太可能先于形态的变化。这些结果表明,可变的选择压力可能导致了不同分类群精子特征的进化,并突出了内部受精和外部受精、有和没有精子储存的分类群之间的基本生物学差异。

相似文献

1
Evolution of sperm structure and energetics in passerine birds.
Proc Biol Sci. 2013 Jan 2;280(1753):20122616. doi: 10.1098/rspb.2012.2616. Print 2013 Feb 22.
3
4
Performance of Rodent Spermatozoa Over Time Is Enhanced by Increased ATP Concentrations: The Role of Sperm Competition.
Biol Reprod. 2015 Sep;93(3):64. doi: 10.1095/biolreprod.114.127621. Epub 2015 Jul 8.
5
Sperm design and sperm function.
Biol Lett. 2006 Jun 22;2(2):246-9. doi: 10.1098/rsbl.2006.0449.
9
Implications of diversity in sperm size and function for sperm competition and fertility.
Int J Dev Biol. 2008;52(5-6):439-47. doi: 10.1387/ijdb.082595mg.
10
Postcopulatory sexual selection is associated with accelerated evolution of sperm morphology.
Evolution. 2015 Apr;69(4):1044-52. doi: 10.1111/evo.12620. Epub 2015 Mar 21.

引用本文的文献

2
Sperm mtDNA Copy Number Is Not Associated With Midpiece Size Among Songbirds.
Ecol Evol. 2025 Mar 2;15(3):e71055. doi: 10.1002/ece3.71055. eCollection 2025 Mar.
4
Fertilization mode differentially impacts the evolution of vertebrate sperm components.
Nat Commun. 2022 Nov 10;13(1):6809. doi: 10.1038/s41467-022-34609-7.
5
Flagellum tapering and midpiece volume in songbird spermatozoa.
J Morphol. 2022 Dec;283(12):1577-1589. doi: 10.1002/jmor.21524. Epub 2022 Oct 28.
7
Sperm Numbers as a Paternity Guard in a Wild Bird.
Cells. 2022 Jan 11;11(2):231. doi: 10.3390/cells11020231.
8
A sex chromosome inversion is associated with copy number variation of mitochondrial DNA in zebra finch sperm.
R Soc Open Sci. 2021 Sep 1;8(9):211025. doi: 10.1098/rsos.211025. eCollection 2021 Sep.
9
Longer Sperm Swim More Slowly in the Canary Islands Chiffchaff.
Cells. 2021 May 31;10(6):1358. doi: 10.3390/cells10061358.
10
Sperm bauplan and function and underlying processes of sperm formation and selection.
Physiol Rev. 2022 Jan 1;102(1):7-60. doi: 10.1152/physrev.00009.2020. Epub 2021 Apr 21.

本文引用的文献

1
THE EVOLUTION OF SPERM SIZE IN BIRDS.
Evolution. 1997 Jun;51(3):937-945. doi: 10.1111/j.1558-5646.1997.tb03674.x.
2
Female reproductive tract form drives the evolution of complex sperm morphology.
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4538-43. doi: 10.1073/pnas.1111474109. Epub 2012 Feb 7.
3
Sperm competition and the evolution of sperm design in mammals.
BMC Evol Biol. 2011 Jan 13;11:12. doi: 10.1186/1471-2148-11-12.
4
Physiology and endocrinology symposium: a proteome-based model for sperm mobility phenotype.
J Anim Sci. 2011 May;89(5):1330-7. doi: 10.2527/jas.2010-3367. Epub 2010 Oct 29.
5
Sperm length variation as a predictor of extrapair paternity in passerine birds.
PLoS One. 2010 Oct 18;5(10):e13456. doi: 10.1371/journal.pone.0013456.
7
Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists.
Biol Rev Camb Philos Soc. 2010 Nov;85(4):935-56. doi: 10.1111/j.1469-185X.2010.00141.x.
8
Linking sperm length and velocity: the importance of intramale variation.
Biol Lett. 2010 Dec 23;6(6):797-9. doi: 10.1098/rsbl.2010.0231. Epub 2010 May 19.
9
Sperm midpiece length predicts sperm swimming velocity in house mice.
Biol Lett. 2010 Aug 23;6(4):513-6. doi: 10.1098/rsbl.2009.1027. Epub 2010 Feb 10.
10
Sperm morphology and velocity are genetically codetermined in the zebra finch.
Evolution. 2009 Oct;63(10):2730-7. doi: 10.1111/j.1558-5646.2009.00753.x. Epub 2009 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验