Tianjin University of Science and Technology, Tianjin, China.
J Virol. 2013 Mar;87(6):3130-42. doi: 10.1128/JVI.03220-12. Epub 2013 Jan 2.
Conformational changes in the glycoproteins of enveloped viruses are critical for membrane fusion, which enables viral entry into cells and the pathological cell-cell fusion (syncytia) associated with some viral infections. However, technological capabilities for identifying viral glycoproteins and their conformational changes on actual enveloped virus surfaces are generally scarce, challenging, and time-consuming. Our model, Nipah virus (NiV), is a syncytium-forming biosafety level 4 pathogen with a high mortality rate (40 to 75%) in humans. Once the NiV attachment glycoprotein (G) (NiV-G) binds the cell receptor ephrinB2 or -B3, G triggers conformational changes in the fusion glycoprotein (F) that result in membrane fusion and viral entry. We demonstrate that confocal micro-Raman spectroscopy can, within minutes, simultaneously identify specific G and F glycoprotein signals and receptor-induced conformational changes in NiV-F on NiV virus-like particles (VLPs). First, we identified reproducible G- and F-specific Raman spectral features on NiV VLPs containing M (assembly matrix protein), G, and/or F or on NiV/vesicular stomatitis virus (VSV) pseudotyped virions via second-derivative transformations and principal component analysis (PCA). Statistical analyses validated our PCA models. Dynamic temperature-induced conformational changes in F and G or receptor-induced target membrane-dependent conformational changes in F were monitored in NiV pseudovirions in situ in real time by confocal micro-Raman spectroscopy. Advantageously, Raman spectroscopy can identify specific protein signals in relatively impure samples. Thus, this proof-of-principle technological development has implications for the rapid identification and biostability characterization of viruses in medical, veterinary, and food samples and for the analysis of virion glycoprotein conformational changes in situ during viral entry.
包膜病毒糖蛋白的构象变化对于膜融合至关重要,这使病毒能够进入细胞,并与某些病毒感染相关的病理性细胞-细胞融合(合胞体)。然而,识别病毒糖蛋白及其在实际包膜病毒表面上构象变化的技术能力通常是稀缺、具有挑战性和耗时的。我们的模型,尼帕病毒(NiV),是一种能够形成合胞体的生物安全 4 级病原体,其在人类中的死亡率(40%至 75%)很高。一旦 NiV 附着糖蛋白(G)(NiV-G)结合细胞受体 EphrinB2 或 EphrinB3,G 就会引发融合糖蛋白(F)的构象变化,导致膜融合和病毒进入。我们证明,共焦微拉曼光谱技术可以在几分钟内同时识别 NiV 病毒样颗粒(VLPs)上 NiV-F 的特定 G 和 F 糖蛋白信号以及受体诱导的构象变化。首先,我们通过二阶导数变换和主成分分析(PCA),在含有 M(组装基质蛋白)、G 和/或 F 的 NiV VLPs 或 NiV/水疱性口炎病毒(VSV)假型病毒颗粒上,鉴定出 NiV-G 和 NiV-F 的可重复的拉曼光谱特征。统计分析验证了我们的 PCA 模型。通过共聚焦微拉曼光谱技术,在 NiV 假病毒颗粒中实时原位监测 F 和 G 的动态温度诱导构象变化或 F 与靶细胞膜相互作用的受体诱导构象变化。有利的是,拉曼光谱可以在相对不纯的样品中识别特定的蛋白质信号。因此,这项原理验证的技术发展对于在医学、兽医和食品样品中快速识别和生物稳定性表征病毒,以及分析病毒进入过程中病毒颗粒糖蛋白的原位构象变化具有重要意义。