Suppr超能文献

血管紧张素 II 独立于腺苷 I 型受体促进糖尿病大鼠肾小球高滤过。

Angiotensin II contributes to glomerular hyperfiltration in diabetic rats independently of adenosine type I receptors.

机构信息

Uppsala Univ., Dept. of Medical Cell Biology, Biomedical Center, Box 571, 751 23 Uppsala, Sweden.

出版信息

Am J Physiol Renal Physiol. 2013 Mar 1;304(5):F614-22. doi: 10.1152/ajprenal.00285.2012. Epub 2013 Jan 2.

Abstract

Increased angiotensin II (ANG II) or adenosine can potentiate each other in the regulation of renal hemodynamics and tubular function. Diabetes is characterized by hyperfiltration, yet the roles of ANG II and adenosine receptors for controlling baseline renal blood flow (RBF) or tubular Na(+) handling in diabetes is presently unknown. Accordingly, the changes in their functions were investigated in control and 2-wk streptozotocin-diabetic rats after intrarenal infusion of the ANG II AT1 receptor antagonist candesartan, the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), or their combination. Compared with controls, the baseline blood pressure, RBF, and renal vascular resistance (RVR) were similar in diabetics, whereas the glomerular filtration rate (GFR) and filtration fraction (FF) were increased. Candesartan, DPCPX, or the combination increased RBF and decreased RVR similarly in all groups. In controls, the GFR was increased by DPCPX, but in diabetics, it was decreased by candesartan. The FF was decreased by candesartan and DPCPX, independently. DPCPX caused the most pronounced increase in fractional Na(+) excretion in both controls and diabetics, whereas candesartan or the combination only affected fractional Li(+) excretion in diabetics. These results suggest that RBF, via a unifying mechanism, and tubular function are under strict tonic control of both ANG II and adenosine in both control and diabetic kidneys. Furthermore, increased vascular AT1 receptor activity is a contribution to diabetes-induced hyperfiltration independent of any effect of adenosine A1 receptors.

摘要

血管紧张素 II (ANG II) 或腺苷的增加可以相互增强对肾脏血液动力学和管状功能的调节。糖尿病的特征是超滤,然而,ANG II 和腺苷受体在控制糖尿病患者基础肾血流量 (RBF) 或管状 Na(+) 处理方面的作用目前尚不清楚。因此,在给予肾内 ANG II AT1 受体拮抗剂坎地沙坦、腺苷 A1 受体拮抗剂 8-环戊基-1,3-二丙基黄嘌呤 (DPCPX) 或两者联合治疗后,研究了它们在对照和 2 周链脲佐菌素糖尿病大鼠中的功能变化。与对照组相比,糖尿病患者的基础血压、RBF 和肾血管阻力 (RVR) 相似,而肾小球滤过率 (GFR) 和滤过分数 (FF) 增加。坎地沙坦、DPCPX 或两者联合均能同等增加所有组的 RBF 并降低 RVR。在对照组中,DPCPX 增加 GFR,但在糖尿病患者中,坎地沙坦降低 GFR。坎地沙坦和 DPCPX 均独立降低 FF。DPCPX 使对照组和糖尿病患者的钠排泄分数均显著增加,而坎地沙坦或联合治疗仅影响糖尿病患者的锂排泄分数。这些结果表明,RBF 通过统一的机制,以及管状功能,在对照和糖尿病肾脏中均受到 ANG II 和腺苷的严格紧张性控制。此外,血管 AT1 受体活性的增加是糖尿病引起的超滤的一个贡献,与腺苷 A1 受体的任何作用无关。

相似文献

1
Angiotensin II contributes to glomerular hyperfiltration in diabetic rats independently of adenosine type I receptors.
Am J Physiol Renal Physiol. 2013 Mar 1;304(5):F614-22. doi: 10.1152/ajprenal.00285.2012. Epub 2013 Jan 2.
2
Effects of acute AT1 receptor blockade by candesartan on arterial pressure and renal function in rats.
Am J Physiol. 1998 May;274(5):F940-5. doi: 10.1152/ajprenal.1998.274.5.F940.
3
Renal effects of adenosine A1-receptor blockade with 8-cyclopentyl-1,3-dipropylxanthine in hypoxemic newborn rabbits.
Pediatr Res. 2003 Sep;54(3):400-5. doi: 10.1203/01.PDR.0000078273.08316.26. Epub 2003 Jun 4.
4
Renovascular remodeling and renal injury after extended angiotensin II infusion.
Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1295-307. doi: 10.1152/ajprenal.00471.2015. Epub 2016 Mar 9.
6
Effects of selective A1 receptor blockade on glomerular hemodynamics: involvement of renin-angiotensin system.
Am J Physiol. 1994 Nov;267(5 Pt 2):F783-90. doi: 10.1152/ajprenal.1994.267.5.F783.
7
Acute renal hemodynamic effects of ACE inhibition in diabetic hyperfiltration: role of kinins.
Am J Physiol. 1995 Apr;268(4 Pt 2):F588-94. doi: 10.1152/ajprenal.1995.268.4.F588.

引用本文的文献

1
Elucidating the function of clusterin in the progression of diabetic kidney disease.
Front Pharmacol. 2025 May 14;16:1573654. doi: 10.3389/fphar.2025.1573654. eCollection 2025.
3
Renal handling of albumin in rats with early stage diabetes: A theoretical analysis.
J Physiol. 2024 Jul;602(14):3575-3592. doi: 10.1113/JP286245. Epub 2024 Jun 10.
4
Molecular pathways that drive diabetic kidney disease.
J Clin Invest. 2023 Feb 15;133(4):e165654. doi: 10.1172/JCI165654.
5
Blocking angiotensin 2 receptor attenuates diabetic nephropathy via mitigating ANGPTL2/TL4/NF-κB expression.
Mol Biol Rep. 2021 Sep;48(9):6457-6470. doi: 10.1007/s11033-021-06647-9. Epub 2021 Aug 24.
6
Adenosine A and A Receptors as Targets for the Treatment of Hypertensive-Diabetic Nephropathy.
Biomedicines. 2020 Nov 23;8(11):529. doi: 10.3390/biomedicines8110529.
7
Diabetes downregulates renal adenosine A2A receptors in an experimental model of hypertension.
PLoS One. 2019 May 31;14(5):e0217552. doi: 10.1371/journal.pone.0217552. eCollection 2019.
9
Recent advances in renal hemodynamics: insights from bench experiments and computer simulations.
Am J Physiol Renal Physiol. 2015 May 1;308(9):F951-5. doi: 10.1152/ajprenal.00008.2015. Epub 2015 Feb 25.
10
Blood pressure, heart rate and tubuloglomerular feedback in A1AR-deficient mice with different genetic backgrounds.
Acta Physiol (Oxf). 2015 Jan;213(1):259-67. doi: 10.1111/apha.12377. Epub 2014 Sep 24.

本文引用的文献

1
Insulin induces the correlation between renal blood flow and glomerular filtration rate in diabetes: implications for mechanisms causing hyperfiltration.
Am J Physiol Regul Integr Comp Physiol. 2012 Jul 1;303(1):R39-47. doi: 10.1152/ajpregu.00582.2011. Epub 2012 Mar 28.
2
The proximal tubule in the pathophysiology of the diabetic kidney.
Am J Physiol Regul Integr Comp Physiol. 2011 May;300(5):R1009-22. doi: 10.1152/ajpregu.00809.2010. Epub 2011 Jan 12.
3
Tubular reabsorption and diabetes-induced glomerular hyperfiltration.
Acta Physiol (Oxf). 2010 Sep;200(1):3-10. doi: 10.1111/j.1748-1716.2010.02147.x. Epub 2010 May 27.
4
Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney.
Am J Physiol Renal Physiol. 2010 Feb;298(2):F416-20. doi: 10.1152/ajprenal.00229.2009. Epub 2009 Nov 18.
5
The renal vascular response to diabetes.
Curr Opin Nephrol Hypertens. 2010 Jan;19(1):85-90. doi: 10.1097/MNH.0b013e32833240fc.
6
Proinsulin C-peptide reduces diabetes-induced glomerular hyperfiltration via efferent arteriole dilation and inhibition of tubular sodium reabsorption.
Am J Physiol Renal Physiol. 2009 Nov;297(5):F1265-72. doi: 10.1152/ajprenal.00228.2009. Epub 2009 Sep 9.
7
Adenosine receptors and the kidney.
Handb Exp Pharmacol. 2009(193):443-70. doi: 10.1007/978-3-540-89615-9_15.
8
Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes.
Am J Physiol Regul Integr Comp Physiol. 2009 Jun;296(6):R1761-70. doi: 10.1152/ajpregu.90731.2008. Epub 2009 Apr 1.
9
Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis.
Diabetologia. 2009 Apr;52(4):691-7. doi: 10.1007/s00125-009-1268-0. Epub 2009 Feb 7.
10
Angiotensin II enhances the afferent arteriolar response to adenosine through increases in cytosolic calcium.
Acta Physiol (Oxf). 2009 Aug;196(4):435-45. doi: 10.1111/j.1748-1716.2009.01956.x. Epub 2009 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验