Wong Ken C L, Relan Jatin, Wang Linwei, Sermesant Maxime, Delingette Hervé, Ayache Nicholas, Shi Pengcheng
Computational Biomedicine Laboratory, Rochester Institute of Technology, Rochester, USA.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):617-24. doi: 10.1007/978-3-642-33415-3_76.
Model personalization is essential for model-based surgical planning and treatment assessment. As alteration in material elasticity is a fundamental cause to various cardiac pathologies, estimation of material properties is important to model personalization. Although the myocardium is heterogeneous, hyperelastic, and orthotropic, existing image-based estimation frameworks treat the tissue as either heterogeneous but linear, or hyperelastic but homogeneous. In view of these, we present a physiology-based framework for estimating regional, hyperelastic, and orthotropic material properties. A cardiac physiological model is adopted to describe the macroscopic cardiac physiology. By using a strain-based objective function which properly reflects the change of material constants, the regional material properties of a hyperelastic and orthotropic constitutive law are estimated using derivative-free optimization. Experiments were performed on synthetic and real data to show the characteristics of the framework.
模型个性化对于基于模型的手术规划和治疗评估至关重要。由于材料弹性的改变是各种心脏疾病的根本原因,材料特性的估计对于模型个性化很重要。尽管心肌是异质的、超弹性的和正交各向异性的,但现有的基于图像的估计框架将组织视为要么是异质但线性的,要么是超弹性但均匀的。鉴于此,我们提出了一个基于生理学的框架来估计区域、超弹性和正交各向异性的材料特性。采用心脏生理模型来描述宏观心脏生理学。通过使用能恰当反映材料常数变化的基于应变的目标函数,利用无导数优化来估计超弹性和正交各向异性本构定律的区域材料特性。在合成数据和真实数据上进行了实验以展示该框架的特性。