Zaman Md Shakil, Dhamala Jwala, Bajracharya Pradeep, Sapp John L, Horácek B Milan, Wu Katherine C, Trayanova Natalia A, Wang Linwei
Rochester Institute of Technology, Rochester, NY, United States.
Department of Medicine, Dalhousie University, Halifax, NS, Canada.
Front Physiol. 2021 Oct 25;12:740306. doi: 10.3389/fphys.2021.740306. eCollection 2021.
Probabilistic estimation of cardiac electrophysiological model parameters serves an important step toward model personalization and uncertain quantification. The expensive computation associated with these model simulations, however, makes direct Markov Chain Monte Carlo (MCMC) sampling of the posterior probability density function (pdf) of model parameters computationally intensive. Approximated posterior pdfs resulting from replacing the simulation model with a computationally efficient surrogate, on the other hand, have seen limited accuracy. In this study, we present a Bayesian active learning method to directly approximate the posterior pdf function of cardiac model parameters, in which we intelligently select training points to query the simulation model in order to learn the posterior pdf using a small number of samples. We integrate a generative model into Bayesian active learning to allow approximating posterior pdf of high-dimensional model parameters at the resolution of the cardiac mesh. We further introduce new acquisition functions to focus the selection of training points on better approximating the shape rather than the modes of the posterior pdf of interest. We evaluated the presented method in estimating tissue excitability in a 3D cardiac electrophysiological model in a range of synthetic and real-data experiments. We demonstrated its improved accuracy in approximating the posterior pdf compared to Bayesian active learning using regular acquisition functions, and substantially reduced computational cost in comparison to existing standard or accelerated MCMC sampling.
心脏电生理模型参数的概率估计是实现模型个性化和不确定性量化的重要一步。然而,与这些模型模拟相关的昂贵计算使得对模型参数的后验概率密度函数(pdf)进行直接马尔可夫链蒙特卡罗(MCMC)采样在计算上非常密集。另一方面,用计算效率高的替代模型替换模拟模型所得到的近似后验pdf的准确性有限。在本研究中,我们提出了一种贝叶斯主动学习方法来直接近似心脏模型参数的后验pdf函数,其中我们智能地选择训练点来查询模拟模型,以便使用少量样本学习后验pdf。我们将生成模型集成到贝叶斯主动学习中,以允许在心脏网格分辨率下近似高维模型参数的后验pdf。我们进一步引入新的采集函数,将训练点的选择集中在更好地近似感兴趣的后验pdf的形状而不是模式上。我们在一系列合成和真实数据实验中评估了所提出的方法在估计三维心脏电生理模型中的组织兴奋性方面的性能。与使用常规采集函数的贝叶斯主动学习相比,我们证明了其在近似后验pdf方面具有更高的准确性,并且与现有的标准或加速MCMC采样相比,计算成本大幅降低。