Suppr超能文献

使用非局部时空先验的自动室间隔分割

Automated intraventricular septum segmentation using non-local spatio-temporal priors.

作者信息

Gupta Mithun Das, Thiruvenkadam Sheshadri, Subramanian Navneeth, Govind Satish

机构信息

John F. Welch Technology Center, GE Global Research, Bangalore, India.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 1):683-90. doi: 10.1007/978-3-642-33415-3_84.

Abstract

Automated robust segmentation of intra-ventricular septum (IVS) from B-mode echocardiographic images is an enabler for early quantification of cardiac disease. Segmentation of septum from ultrasound images is very challenging due to variations in intensity/contrast in and around the septum, speckle noise and non-rigid shape variations of the septum boundary. In this work, we effectively address these challenges using an approach that merges novel computer vision ideas with physiological markers present in cardiac scans. Specifically, we contribute towards the following: (1) A novel 1-D active contour segmentation approach that utilizes non-local (NL) temporal cues, (2) Robust initialization of the active contour framework, based on NL-means de-noising, and MRF based clustering that incorporates physiological cues. We validate our claims using cardiac measurement results on approximately 30 cardiac scan videos (approximately 2000 ultrasound frames in total). Our method is fully automatic and near real time (0.1 sec/frame) implementation.

摘要

从B型超声心动图图像中自动稳健分割室间隔(IVS)是实现心脏病早期量化的一项关键技术。由于室间隔内部及其周围的强度/对比度变化、斑点噪声以及室间隔边界的非刚性形状变化,从超声图像中分割室间隔极具挑战性。在这项工作中,我们采用一种将新颖的计算机视觉理念与心脏扫描中存在的生理标记相结合的方法,有效应对了这些挑战。具体而言,我们在以下方面做出了贡献:(1)一种利用非局部(NL)时间线索的新颖一维主动轮廓分割方法;(2)基于NL均值去噪和结合生理线索的基于马尔可夫随机场(MRF)的聚类对主动轮廓框架进行稳健初始化。我们通过对大约30个心脏扫描视频(总共约2000个超声帧)进行心脏测量结果来验证我们的主张。我们的方法是完全自动且接近实时(0.1秒/帧)的实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验