Suppr超能文献

利用 PET 自门控和形变图像配准校正数据驱动门控(DDG)PET 的 CT 配准错误。

Correcting CT misregistration in data-driven gated (DDG) PET with PET self-gating and deformable image registration.

机构信息

Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas, USA.

Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

Med Phys. 2024 Mar;51(3):1626-1636. doi: 10.1002/mp.16958. Epub 2024 Jan 29.

Abstract

BACKGROUND

Misregistration between CT and PET data can result in mis-localization and inaccurate quantification of functional uptake in whole body PET/CT imaging. This problem is exacerbated when an abnormal inspiration occurs during the free-breathing helical CT (FB CT) used for attenuation correction of PET data. In data-driven gated (DDG) PET, the data selected for reconstruction is typically derived from the end-expiration (EE) phase of the breathing cycle, making this potential issue worse.

PURPOSE

The objective of this study is to develop a deformable image registration (DIR)-based respiratory motion model to improve the registration and quantification between misregistered FB CT and PET.

METHODS

Twenty-two whole-body F-FDG PET/CT scans encompassing 48 lesions in misregistered regions were analyzed in this study. End-inspiration (EI) and EE PET data were derived from -10% to 15% and 30% to 80% of the breathing cycle, respectively. DIR was used to estimate a motion model from the EE to EI phase of the PET data. The model was then used to generate PET images at any phase of up to four times the amplitude of motion between EE and EI for correlation with the misregistered FB CT. Once a matched phase of the FB CT was determined, FB CT was deformed to a pseudo CT at the EE phase (DIR CT). DIR CT was compared with the ground truth DDG CT for AC and localization of the DDG PET.

RESULTS

Between DDG PET/FB CT and DDG PET/DIR CT, a significant increase in ∆%SUV was observed (p < 0.01), with median values elevating from 26.7% to 42.4%. This new method was most effective for lesions ≤3 cm proximal to the diaphragm (p < 0.001) but showed decreasing efficacy as the distance increased. When FB CT was severely misregistered with DDG PET (>3 cm), DDG PET/DIR CT outperformed DDG PET/FB CT alone (p < 0.05). Even when patients showed varied breathing patterns during the PET/CT scan, DDG PET/DIR CT still surpassed the efficiency of DDG PET/FB CT (p < 0.01). Though DDG PET/DIR CT couldn't match the performance of the DDG PET/CT ground truth (42.4% vs. 53.6%, p < 0.01), it reached 84% of its quantification, demonstrating good agreement and a strong overall correlation (regression coefficient of 0.94, p < 0.0001). In some cases, anatomical distortion and blurring, and misregistration error were observed in DIR CT, rendering it still unable to correct inaccurate localization near the boundaries of two organs.

CONCLUSIONS

Based on the motion model derived from gated PET data, DIR CT can significantly improve the quantification and localization of DDG PET. This approach can achieve a performance level of about 84% of the ground truth established by DDG PET/CT. These results show that self-gated PET and DIR CT may offer an alternative clinical solution to DDG PET and FB CT for quantification without the need for additional cine-CT imaging. DIR CT was at times inferior to DDG CT due to some distortion and blurring of anatomy and misregistration error.

摘要

背景

CT 和 PET 数据之间的配准错误可能导致全身 PET/CT 成像中功能摄取的定位不准确和定量不准确。当用于 PET 数据衰减校正的自由呼吸螺旋 CT(FB CT)期间发生异常吸气时,这个问题会更加严重。在数据驱动门控(DDG)PET 中,用于重建的数据通常源自呼吸周期的呼气末(EE)相,这使得这个潜在问题更加严重。

目的

本研究旨在开发一种基于变形图像配准(DIR)的呼吸运动模型,以改善配准和错位 FB CT 与 PET 之间的定量。

方法

本研究分析了 22 例全身 F-FDG PET/CT 扫描,共涉及 48 个错位区域的病变。从呼气末(EI)和 EE 相分别获取 -10%到 15%和 30%到 80%的 PET 数据。使用 DIR 从 EE 到 EI 相估计运动模型。然后,该模型用于生成最大可达 EE 和 EI 之间运动幅度四倍的任何相的 PET 图像,以便与配准的 FB CT 相关联。一旦确定了匹配的 FB CT 相,就将 FB CT 变形为 EE 相的伪 CT(DIR CT)。将 DIR CT 与地面真相 DDG CT 进行比较,以进行 AC 和 DDG PET 的定位。

结果

与 DDG PET/FB CT 和 DDG PET/DIR CT 相比,观察到 ∆%SUV 显著增加(p<0.01),中位数从 26.7%升高到 42.4%。这种新方法对距离膈肌近端≤3cm 的病变最有效(p<0.001),但随着距离的增加,效果逐渐降低。当 FB CT 与 DDG PET 严重错位时(>3cm),DDG PET/DIR CT 优于单独的 DDG PET/FB CT(p<0.05)。即使患者在 PET/CT 扫描期间表现出不同的呼吸模式,DDG PET/DIR CT 仍然优于 DDG PET/FB CT(p<0.01)。尽管 DDG PET/DIR CT 无法达到 DDG PET/CT 地面真相的性能(42.4%比 53.6%,p<0.01),但它达到了其定量的 84%,显示出良好的一致性和很强的整体相关性(回归系数为 0.94,p<0.0001)。在某些情况下,在 DIR CT 中观察到解剖结构变形、模糊和配准误差,这使其仍然无法纠正两个器官边界附近的不准确定位。

结论

基于门控 PET 数据得出的运动模型,DIR CT 可以显著提高 DDG PET 的定量和定位。该方法可以达到 DDG PET/CT 地面真相的 84%左右的性能水平。这些结果表明,自门控 PET 和 DIR CT 可能为 DDG PET 和 FB CT 提供替代的临床定量解决方案,而无需额外的电影 CT 成像。由于解剖结构的一些变形、模糊和配准误差,DIR CT 有时不如 DDG CT。

相似文献

2
New full-counts phase-matched data-driven gated (DDG) PET/CT.
Med Phys. 2024 Jul;51(7):4646-4654. doi: 10.1002/mp.17097. Epub 2024 Apr 22.
3
Data-driven gated CT: An automated respiratory gating method to enable data-driven gated PET/CT.
Med Phys. 2022 Jun;49(6):3597-3611. doi: 10.1002/mp.15620. Epub 2022 Apr 22.
4
New Data-Driven Gated PET/CT Free of Misregistration Artifacts.
Int J Radiat Oncol Biol Phys. 2021 Apr 1;109(5):1638-1646. doi: 10.1016/j.ijrobp.2020.11.014. Epub 2020 Nov 10.
5
Impact of acquisition time and misregistration with CT on data-driven gated PET.
Phys Med Biol. 2022 Apr 8;67(8). doi: 10.1088/1361-6560/ac5f73.
6
Data-driven gated PET/CT: implications for lesion segmentation and quantitation.
EJNMMI Phys. 2021 Aug 28;8(1):64. doi: 10.1186/s40658-021-00411-5.

引用本文的文献

1
Brown adipose tissue machine learning nnU-Net V2 network using TriDFusion (3DF).
EJNMMI Res. 2025 Aug 13;15(1):108. doi: 10.1186/s13550-025-01303-w.
3
Data-driven gated positron emission tomography/computed tomography for radiotherapy.
Phys Imaging Radiat Oncol. 2024 Jun 26;31:100601. doi: 10.1016/j.phro.2024.100601. eCollection 2024 Jul.

本文引用的文献

1
Data-driven gated CT: An automated respiratory gating method to enable data-driven gated PET/CT.
Med Phys. 2022 Jun;49(6):3597-3611. doi: 10.1002/mp.15620. Epub 2022 Apr 22.
2
Impact of acquisition time and misregistration with CT on data-driven gated PET.
Phys Med Biol. 2022 Apr 8;67(8). doi: 10.1088/1361-6560/ac5f73.
3
Data-driven gated PET/CT: implications for lesion segmentation and quantitation.
EJNMMI Phys. 2021 Aug 28;8(1):64. doi: 10.1186/s40658-021-00411-5.
4
Prospective data-driven respiratory gating of [Ga]Ga-DOTATOC PET/CT.
EJNMMI Res. 2021 Mar 31;11(1):33. doi: 10.1186/s13550-021-00775-w.
6
New Data-Driven Gated PET/CT Free of Misregistration Artifacts.
Int J Radiat Oncol Biol Phys. 2021 Apr 1;109(5):1638-1646. doi: 10.1016/j.ijrobp.2020.11.014. Epub 2020 Nov 10.
7
Clinical Evaluation of a Data-Driven Respiratory Gating Algorithm for Whole-Body PET with Continuous Bed Motion.
J Nucl Med. 2020 Oct;61(10):1520-1527. doi: 10.2967/jnumed.119.235770. Epub 2020 Feb 14.
8
Impact of free-breathing CT on quantitative measurements of static and quiescent period-gated PET Images.
Phys Med Biol. 2019 May 16;64(10):105013. doi: 10.1088/1361-6560/ab1cdd.
10
Respiratory Motion Compensation for PET/CT with Motion Information Derived from Matched Attenuation-Corrected Gated PET Data.
J Nucl Med. 2018 Sep;59(9):1480-1486. doi: 10.2967/jnumed.117.203000. Epub 2018 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验