van de Giessen Martijn, Vos Frans M, Grimbergen Cornelis A, van Vliet Lucas J, Streekstra Geert J
Quantitative Imaging Group, Delft University of Technology, The Netherlands.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):155-62. doi: 10.1007/978-3-642-33418-4_20.
We present an extension of the symmetric ICP algorithm that is unbiased for an arbitrary number (N > or = 2) of shapes, using rigid transformations and scaling. The method does not require the selection of a reference shape or registration order and hence it is unbiased towards any of the registered shapes. The functional to be minimized is non-linear in the transformation parameters and thus computationally complex. We therefore propose a first order approximation that estimates the transformation parameters in a closed form, with computational complexity (see text for symbol)(N2). Using a set of wrist bones, we show that the least-squares minimization and the proposed approximation converge to the same solution. Experiments also show that the proposed algorithms lead to smaller registration errors than algorithms that select a reference shape or register to an evolving mean shape. The low computational cost and trivial parallelization enable the alignment of large numbers of bones.
我们提出了对称迭代最近点(ICP)算法的一种扩展,该扩展对于任意数量(N≥2)的形状使用刚体变换和缩放时是无偏的。该方法不需要选择参考形状或配准顺序,因此对任何已配准的形状都无偏向性。要最小化的函数在变换参数中是非线性的,因此计算复杂。因此,我们提出了一种一阶近似,它以封闭形式估计变换参数,计算复杂度为(见文本中的符号)(N²)。使用一组腕骨,我们表明最小二乘最小化和所提出的近似收敛到相同的解。实验还表明,与选择参考形状或配准到不断演变的平均形状的算法相比,所提出的算法导致的配准误差更小。低计算成本和简单的并行化使得能够对齐大量骨骼。