Rivaz Hassan, Collins D Louis
Montreal Neurological Institute, McGill University.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):91-8. doi: 10.1007/978-3-642-33454-2_12.
Extending mutual information (MI), which has been widely used as a similarity measure for rigid registration of multi-modal images, to deformable registration is an active field of research. We propose a self-similarity weighted graph-based implementation of alpha-mutual information (alpha-MI) for nonrigid image registration. The new Self Similarity alpha-MI (SeSaMI) metric takes local structures into account and is robust against signal non-stationarity and intensity distortions. We have used SeSaMI as the similarity measure in a regularized cost function with B-spline deformation field. Since the gradient of SeSaMI can be derived analytically, the cost function can be efficiently optimized using stochastic gradient descent. We show that SeSaMI produces a robust and smooth cost function and outperforms the state of the art statistical based similarity metrics in simulation and using data from image-guided neurosurgery.
扩展互信息(MI),它已被广泛用作多模态图像刚性配准的相似性度量,将其应用于可变形配准是一个活跃的研究领域。我们提出了一种基于自相似性加权图的α-互信息(α-MI)实现方法,用于非刚性图像配准。新的自相似性α-MI(SeSaMI)度量考虑了局部结构,并且对信号非平稳性和强度失真具有鲁棒性。我们已将SeSaMI用作具有B样条变形场的正则化代价函数中的相似性度量。由于SeSaMI的梯度可以通过解析推导得出,因此可以使用随机梯度下降有效地优化代价函数。我们表明,SeSaMI产生了一个鲁棒且平滑的代价函数,并且在模拟以及使用图像引导神经外科手术的数据时,其性能优于基于统计的最新相似性度量。