Shim Jung Eun, Lee Insuk
Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.
Bioinformatics. 2016 Sep 15;32(18):2824-30. doi: 10.1093/bioinformatics/btw320. Epub 2016 May 20.
Functional protein-protein interaction (PPI) networks elucidate molecular pathways underlying complex phenotypes, including those of human diseases. Extrapolation of domain-domain interactions (DDIs) from known PPIs is a major domain-based method for inferring functional PPI networks. However, the protein domain is a functional unit of the protein. Therefore, we should be able to effectively infer functional interactions between proteins based on the co-occurrence of domains.
Here, we present a method for inferring accurate functional PPIs based on the similarity of domain composition between proteins by weighted mutual information (MI) that assigned different weights to the domains based on their genome-wide frequencies. Weighted MI outperforms other domain-based network inference methods and is highly predictive for pathways as well as phenotypes. A genome-scale human functional network determined by our method reveals numerous communities that are significantly associated with known pathways and diseases. Domain-based functional networks may, therefore, have potential applications in mapping domain-to-pathway or domain-to-phenotype associations.
Source code for calculating weighted mutual information based on the domain profile matrix is available from www.netbiolab.org/w/WMI CONTACT: Insuklee@yonsei.ac.kr
Supplementary data are available at Bioinformatics online.
功能性蛋白质-蛋白质相互作用(PPI)网络阐明了复杂表型(包括人类疾病表型)背后的分子途径。从已知的PPI推断结构域-结构域相互作用(DDI)是推断功能性PPI网络的一种主要的基于结构域的方法。然而,蛋白质结构域是蛋白质的功能单位。因此,我们应该能够基于结构域的共现有效地推断蛋白质之间的功能相互作用。
在此,我们提出了一种基于蛋白质之间结构域组成相似性的加权互信息(MI)推断准确功能性PPI的方法,该方法根据结构域在全基因组中的频率为其赋予不同权重。加权MI优于其他基于结构域的网络推断方法,并且对途径和表型具有高度预测性。通过我们的方法确定的全基因组规模的人类功能网络揭示了许多与已知途径和疾病显著相关的群落。因此,基于结构域的功能网络在绘制结构域到途径或结构域到表型的关联方面可能具有潜在应用。
基于结构域概况矩阵计算加权互信息的源代码可从www.netbiolab.org/w/WMI获取。
补充数据可在《生物信息学》在线获取。