Chaari L, Forbes F, Vincent T, Ciuciu P
Mistis team, Inria Grenoble and LJK, France.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):180-8. doi: 10.1007/978-3-642-33454-2_23.
Identifying brain hemodynamics in event-related functional MRI (fMRI) data is a crucial issue to disentangle the vascular response from the neuronal activity in the BOLD signal. This question is usually addressed by estimating the so-called hemodynamic response function (HRF). Voxelwise or region-/parcelwise inference schemes have been proposed to achieve this goal but so far all known contributions commit to pre-specified spatial supports for the hemodynamic territories by defining these supports either as individual voxels or a priori fixed brain parcels. In this paper, we introduce a joint parcellation-detection-estimation (JPDE) procedure that incorporates an adaptive parcel identification step based upon local hemodynamic properties. Efficient inference of both evoked activity, HRF shapes and supports is then achieved using variational approximations. Validation on synthetic and real fMRI data demonstrate the JPDE performance over standard detection estimation schemes and suggest it as a new brain exploration tool.
在事件相关功能磁共振成像(fMRI)数据中识别脑血流动力学是一个关键问题,目的是在血氧水平依赖(BOLD)信号中区分血管反应与神经元活动。这个问题通常通过估计所谓的血流动力学反应函数(HRF)来解决。已经提出了体素级或区域/脑区级的推理方案来实现这一目标,但到目前为止,所有已知的方法都是通过将这些支持定义为单个体素或先验固定的脑区,从而为血流动力学区域预先指定空间支持。在本文中,我们引入了一种联合脑区划分-检测-估计(JPDE)程序,该程序基于局部血流动力学特性纳入了一个自适应脑区识别步骤。然后使用变分近似实现对诱发活动、HRF形状和支持的有效推理。在合成和真实fMRI数据上的验证证明了JPDE相对于标准检测估计方案的性能,并表明它是一种新的脑探索工具。