Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.
ACS Appl Mater Interfaces. 2013 Feb;5(3):861-8. doi: 10.1021/am302479u. Epub 2013 Jan 25.
Polymer solar cells (PSCs) consisting of fullerene bis-adduct and poly(3-hexylthiophene) (P3HT) blends have shown higher efficiencies than P3HT:phenyl C(61)-butyric acid methyl ester (PCBM) devices, because of the high-lying lowest unoccupied molecular orbital (LUMO) level of the fullerene bis-adducts. In contrast, the use of fullerene bis-adducts in donor-acceptor (DA) copolymer systems typically causes a decrease in the device's performance due to the decreased short-circuit current (J(SC)) and the fill factor (FF). However, the reason for such poor performance in DA copolymer:fullerene bis-adduct blends is not fully understood. In this work, bulk-heterojunction (BHJ)-type PSCs composed of three different electron donors with four different electron acceptors were chosen and compared. The three electron donors were (1) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl] (PBDTTPD), (2) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), and (3) P3HT polymers. The four electron acceptors were (1) PCBM, (2) indene-C(60) monoadduct (ICMA), (3) indene-C(60) bis-adduct (ICBA), and (4) indene-C(60) tris-adduct (ICTA). To understand the difference in the performance of BHJ-type PSCs for the three different polymers in terms of the choice of fullerene acceptor, the structural, optical, and electrical properties of the blends were measured by the external quantum efficiency (EQE), photoluminescence, grazing incidence X-ray scattering, and transient absorption spectroscopy. We observed that while the molecular packing and optical properties cannot be the main reasons for the dramatic decrease in the PCE of the DA copolymers and ICBA, the value of the driving force for charge transfer (ΔG(CT)) is a key parameter for determining the change in J(SC) and device efficiency in the DA copolymer- and P3HT-based PSCs in terms of fullerene acceptor. The low EQE and J(SC) in PBDTTPD and PBDTTT-C blended with ICBA and ICTA were attributed to an insufficient ΔG(CT) due to the higher LUMO levels of the fullerene multiadducts. Quantitative information on the efficiency of the charge transfer was obtained by comparing the polaron yield, lifetime, and exciton dissociation probability in the DA copolymer:fullerene acceptor films.
聚合物太阳能电池(PSCs)由富勒烯双加成物和聚(3-己基噻吩)(P3HT)混合物组成,与 P3HT:苯基 C(61)-丁酸甲酯(PCBM)器件相比,具有更高的效率,因为富勒烯双加成物具有较高的最低未占据分子轨道(LUMO)能级。相比之下,在给体-受体(DA)共聚物系统中使用富勒烯双加成物通常会导致器件性能下降,因为短路电流(J(SC))和填充因子(FF)降低。然而,在 DA 共聚物:富勒烯双加成物混合物中性能如此差的原因尚未完全理解。在这项工作中,选择并比较了由三种不同电子给体和四种不同电子受体组成的三种不同电子给体和四种不同电子受体的体异质结(BHJ)型 PSCs。三种电子给体为(1)聚[(4,8-双(2-乙基己氧基)苯并[1,2-b:4,5-b']二噻吩)-2,6-二基--alt-(5-辛基噻吩[3,4-c]吡咯-4,6-二酮)-1,3-二基](PBDTTPD),(2)聚[(4,8-双(2-乙基己氧基)苯并[1,2-b:4,5-b']二噻吩)-2,6-二基-alt-(4-(2-乙基己酰基)-噻吩[3,4-b]噻吩)-2,6-二基](PBDTTT-C),和(3)P3HT 聚合物。四种电子受体为(1)PCBM,(2)茚并 C(60)单加成物(ICMA),(3)茚并 C(60)双加成物(ICBA)和(4)茚并 C(60)三加成物(ICTA)。为了理解在选择富勒烯受体方面,三种不同聚合物的 BHJ 型 PSCs 的性能差异,通过外量子效率(EQE)、光致发光、掠入射 X 射线散射和瞬态吸收光谱测量了混合物的结构、光学和电学性质。我们观察到,尽管分子堆积和光学性质可能不是 DA 共聚物和 ICBA 中 PCE 急剧下降的主要原因,但对于 DA 共聚物和基于 P3HT 的 PSCs 中的富勒烯受体,电荷转移的驱动力(ΔG(CT))值是决定 J(SC)和器件效率变化的关键参数。PBDTTPD 和 PBDTTT-C 与 ICBA 和 ICTA 混合时的低 EQE 和 J(SC)归因于富勒烯多加成物较高的 LUMO 能级导致的 ΔG(CT)不足。通过比较 DA 共聚物:富勒烯受体薄膜中的极化子产率、寿命和激子解离概率,获得了电荷转移效率的定量信息。