Univ. Bordeaux, ISVV, EA 4577 Œnologie, 33140 Villenave d'Ornon, France.
Appl Microbiol Biotechnol. 2013 May;97(9):4105-19. doi: 10.1007/s00253-012-4660-5. Epub 2013 Jan 5.
Alcoholic fermentation of grape must is a complex process, involving several yeast genera and species. The early stages in fermentation are dominated by non-Saccharomyces yeasts that are gradually replaced by the Saccharomyces cerevisiae species, which takes over the fermentation. Quantitative studies have reported the influence of non-Saccharomyces yeast species on wine quality and evaluated their biotechnological interest. The industrial yeast market, which, until recently, exclusively focused on S. cerevisiae, now offers S. cerevisiae/non-Saccharomyces (including Torulaspora delbrueckii) multi-starters. The development of these new mixed industrial starters requires a better understanding of the interaction mechanisms between yeast populations in order to optimize the aromatic impact of the non-Saccharomyces yeast while ensuring complete alcoholic fermentation thanks to S. cerevisiae. For this purpose, a new double-compartment fermentor was designed with the following characteristics: (1) physical separation of two yeast populations, (2) homogeneity of the culture medium in both compartments, (3) fermentation kinetics monitored by weight loss due to CO2 release, and (4) independent monitoring of growth kinetics in the two compartments. This tool was used to compare mixed inoculations of S. cerevisiae/T. delbrueckii with and without physical separation. Our results revealed that physical contact/proximity between S. cerevisiae and T. delbrueckii induced rapid death of T. delbrueckii, a phenomenon previously described and attributed to a cell-cell contact mechanism. In contrast, when physically separated from S. cerevisiae, T. delbrueckii maintained its viability and its metabolic activity had a marked impact on S. cerevisiae growth and viability. The double fermentor is thus a powerful tool for studying yeast interactions. Our findings shed new light on interaction mechanisms described in microorganism populations.
葡萄汁的酒精发酵是一个复杂的过程,涉及到几个酵母属和种。发酵的早期阶段主要由非酿酒酵母主导,这些酵母逐渐被酿酒酵母取代,后者接管了发酵过程。定量研究报告了非酿酒酵母对葡萄酒质量的影响,并评估了它们的生物技术兴趣。直到最近,工业酵母市场还完全专注于酿酒酵母,但现在提供了酿酒酵母/非酿酒酵母(包括德巴利接合酵母)的混合发酵剂。这些新的混合工业发酵剂的发展需要更好地了解酵母种群之间的相互作用机制,以便优化非酿酒酵母的芳香影响,同时确保完全的酒精发酵,这要归功于酿酒酵母。为此,设计了一种新的双室发酵罐,具有以下特点:(1)两个酵母种群的物理分离,(2)两个隔室中培养基的均一性,(3)通过 CO2 释放引起的重量损失监测发酵动力学,以及(4)在两个隔室中独立监测生长动力学。该工具用于比较酿酒酵母/德巴利接合酵母的混合接种,有无物理分离。我们的结果表明,酿酒酵母和德巴利接合酵母之间的物理接触/接近导致德巴利接合酵母迅速死亡,这种现象以前已经被描述过,并归因于细胞-细胞接触机制。相比之下,当与酿酒酵母物理分离时,德巴利接合酵母保持其活力,其代谢活性对酿酒酵母的生长和活力有显著影响。因此,双发酵罐是研究酵母相互作用的有力工具。我们的发现为微生物种群中描述的相互作用机制提供了新的见解。
Appl Microbiol Biotechnol. 2013-1-5
Int J Food Microbiol. 2008-3-20
World J Microbiol Biotechnol. 2014-7
Int J Food Microbiol. 2013-3-1
Food Microbiol. 2018-3-19
World J Microbiol Biotechnol. 2021-9-28
Microorganisms. 2021-7-29
Int J Mol Sci. 2021-7-20
Appl Microbiol Biotechnol. 2021-6