Medical Research Council Centre for Synaptic Plasticity, School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
Eur J Neurosci. 2013 Mar;37(6):850-9. doi: 10.1111/ejn.12098. Epub 2013 Jan 7.
Traditionally, neurotransmitters are associated with a fast, or phasic, type of action on neurons in the central nervous system (CNS). However, accumulating evidence indicates that γ-aminobutyric acid (GABA) and glutamate can also have a continual, or tonic, influence on these cells. Here, in voltage- and current-clamp recordings in rat brain slices, we identify three types of tonically active receptors in a single CNS structure, the thalamic reticular nucleus (TRN). Thus, TRN contains constitutively active GABAA receptors (GABAA Rs), which are located on TRN neurons and generate a persistent outward Cl(-) current. When TRN neurons are depolarized, blockade of this current increases their action potential output in response to current injection. Furthermore, TRN contains tonically active GluN2B-containing N-methyl-D-aspartate receptors (NMDARs). These are located on reticuloreticular GABAergic terminals in TRN and generate a persistent facilitation of vesicular GABA release from these terminals. In addition, TRN contains tonically active metabotropic glutamate type 2 receptors (mGlu2Rs). These are located on glutamatergic cortical terminals in TRN and generate a persistent reduction of vesicular glutamate release from these terminals. Although tonically active GABAA Rs, NMDARs and mGlu2Rs operate through different mechanisms, we propose that the continual and combined activity of these three receptor types ultimately serves to hyperpolarize TRN neurons, which will differentially affect the output of these cells depending upon the current state of their membrane potential. Thus, when TRN cells are relatively depolarized, their firing in single-spike tonic mode will be reduced, whereas when these cells are relatively hyperpolarized, their ability to fire in multispike burst mode will be facilitated.
传统上,神经递质与中枢神经系统 (CNS) 神经元的快速(即阶段性)作用有关。然而,越来越多的证据表明,γ-氨基丁酸 (GABA) 和谷氨酸也可以对这些细胞产生持续的(即紧张的)影响。在这里,在大鼠脑片的电压和电流钳记录中,我们在单个 CNS 结构——丘脑网状核 (TRN) 中鉴定出三种紧张型活性受体。因此,TRN 包含组成型激活的 GABA A 受体 (GABAA Rs),这些受体位于 TRN 神经元上,并产生持续的外向 Cl(-) 电流。当 TRN 神经元去极化时,阻断该电流会增加它们对电流注入的动作电位输出。此外,TRN 含有紧张型活性的含 GluN2B 的 N-甲基-D-天冬氨酸受体 (NMDARs)。这些受体位于 TRN 中的网状 reticular GABA 能末梢上,并产生这些末梢中囊泡 GABA 释放的持续易化。此外,TRN 含有紧张型活性代谢型谷氨酸 2 型受体 (mGlu2Rs)。这些受体位于 TRN 中的谷氨酸能皮质末梢上,并产生这些末梢中囊泡谷氨酸释放的持续减少。尽管紧张型活性的 GABAA Rs、NMDARs 和 mGlu2Rs 通过不同的机制起作用,但我们提出,这三种受体类型的持续和联合活动最终将使 TRN 神经元超极化,这将根据其膜电位的当前状态对这些细胞的输出产生不同的影响。因此,当 TRN 细胞相对去极化时,它们在单峰紧张模式下的放电将减少,而当这些细胞相对超极化时,它们在多峰爆发模式下的放电能力将得到促进。