Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Santiago, Chile.
Mol Genet Genomics. 2013 Feb;288(1-2):49-61. doi: 10.1007/s00438-012-0730-8. Epub 2013 Jan 8.
Publicly available genomic data are a great source of biological knowledge that can be extracted when appropriate data analysis is used. Predicting the biological function of genes is of interest to understand molecular mechanisms of virulence and resistance in pathogens and hosts and is important for drug discovery and disease control. This is commonly done by searching for similar gene expression behavior. Here, we used publicly available Streptococcus pyogenes microarray data obtained during primate infection to identify genes that have a potential influence on virulence and Phytophtora infestance inoculated tomato microarray data to identify genes potentially implicated in resistance processes. This approach goes beyond co-expression analysis. We employed a quasi-likelihood model separated by primate gender/inoculation condition to model median gene expression of known virulence/resistance factors. Based on this model, an influence analysis considering time course measurement was performed to detect genes with atypical expression. This procedure allowed for the detection of genes potentially implicated in the infection process. Finally, we discuss the biological meaning of these results, showing that influence analysis is an efficient and useful alternative for functional gene prediction.
公共可用的基因组数据是一种很好的生物知识来源,当使用适当的数据分析时,可以从中提取这些知识。预测基因的生物学功能对于理解病原体和宿主的毒力和抗性的分子机制很有意义,对于药物发现和疾病控制也很重要。这通常通过搜索类似的基因表达行为来完成。在这里,我们使用了在灵长类动物感染期间获得的公开的酿脓链球菌微阵列数据,以识别可能对毒力有潜在影响的基因,并用侵染番茄的 Phytophtora infestance 微阵列数据来识别可能与抗性过程相关的基因。这种方法超越了共表达分析。我们采用了一种按灵长类动物性别/接种条件划分的拟似然模型,对已知毒力/抗性因子的中位基因表达进行建模。基于该模型,考虑时间过程测量进行影响分析,以检测具有非典型表达的基因。该程序允许检测可能与感染过程相关的基因。最后,我们讨论了这些结果的生物学意义,表明影响分析是功能基因预测的一种有效且有用的替代方法。