Department of Earth Science, Rice University, Houston, Texas 77005, USA.
Nature. 2013 Jan 10;493(7431):211-5. doi: 10.1038/nature11731.
The onset of melting in the Earth's upper mantle influences the thermal evolution of the planet, fluxes of key volatiles to the exosphere, and geochemical and geophysical properties of the mantle. Although carbonatitic melt could be stable 250 km or less beneath mid-oceanic ridges, owing to the small fraction (∼0.03 wt%) its effects on the mantle properties are unclear. Geophysical measurements, however, suggest that melts of greater volume may be present at ∼200 km (refs 3-5) but large melt fractions are thought to be restricted to shallower depths. Here we present experiments on carbonated peridotites over 2-5 GPa that constrain the location and the slope of the onset of silicate melting in the mantle. We find that the pressure-temperature slope of carbonated silicate melting is steeper than the solidus of volatile-free peridotite and that silicate melting of dry peridotite + CO(2) beneath ridges commences at ∼180 km. Accounting for the effect of 50-200 p.p.m. H(2)O on freezing point depression, the onset of silicate melting for a sub-ridge mantle with ∼100 p.p.m. CO(2) becomes as deep as ∼220-300 km. We suggest that, on a global scale, carbonated silicate melt generation at a redox front ∼250-200 km deep, with destabilization of metal and majorite in the upwelling mantle, explains the oceanic low-velocity zone and the electrical conductivity structure of the mantle. In locally oxidized domains, deeper carbonated silicate melt may contribute to the seismic X-discontinuity. Furthermore, our results, along with the electrical conductivity of molten carbonated peridotite and that of the oceanic upper mantle, suggest that mantle at depth is CO(2)-rich but H(2)O-poor. Finally, carbonated silicate melts restrict the stability of carbonatite in the Earth's deep upper mantle, and the inventory of carbon, H(2)O and other highly incompatible elements at ridges becomes controlled by the flux of the former.
地幔上部的熔融起始影响着行星的热演化、关键挥发物向外部空间的通量,以及地幔的地球化学和地球物理性质。尽管碳酸盐熔体在中洋脊下方 250 公里或更深处可能是稳定的,但由于其比例较小(约 0.03wt%),其对地幔性质的影响尚不清楚。然而,地球物理测量表明,在约 200 公里处可能存在更大体积的熔体(参考文献 3-5),但较大的熔体比例被认为仅限于较浅的深度。在这里,我们在 2-5 GPa 条件下对碳酸盐化橄榄岩进行了实验,以限制地幔中硅酸盐熔融起始的位置和斜率。我们发现,碳酸盐化硅酸盐熔融的压力-温度斜率比无挥发物橄榄岩的固相线陡峭,并且在洋脊下,干橄榄岩+CO(2)的硅酸盐熔融起始于约 180 公里处。考虑到 50-200 ppm H(2)O 对冰点降低的影响,具有约 100 ppm CO(2)的洋脊下地幔中硅酸盐的起始熔融深度可达约 220-300 公里。我们认为,在全球范围内,在约 250-200 公里深处的氧化还原前沿处产生的碳酸盐化硅酸盐熔体,以及上涌地幔中金属和镁尖晶石的失稳,解释了海洋低速带和地幔的电导率结构。在局部氧化域中,更深的碳酸盐化硅酸盐熔体可能会导致地震 X 不连续。此外,我们的结果以及熔融碳酸盐化橄榄岩和海洋上地幔的电导率表明,深部地幔富含 CO(2)而贫 H(2)O。最后,碳酸盐化硅酸盐熔体限制了地幔深部碳酸盐岩的稳定性,而洋脊处的碳酸盐岩、H(2)O 和其他不相容元素的储量由前者的通量控制。