Suppr超能文献

地幔楔橄榄岩中的化石熔体

Fossilized Melts in Mantle Wedge Peridotites.

作者信息

Naemura Kosuke, Hirajima Takao, Svojtka Martin, Shimizu Ichiko, Iizuka Tsuyosi

机构信息

Nagoya University Museum, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

出版信息

Sci Rep. 2018 Jul 4;8(1):10116. doi: 10.1038/s41598-018-28264-6.

Abstract

The shallow oxidized asthenosphere may contain a small fraction of potassic silicate melts that are enriched in incompatible trace elements and volatiles. Here, to determine the chemical composition of such melt, we analysed fossilized melt inclusions, preserved as multiphase solid inclusions, from an orogenic garnet peridotite in the Bohemian Massif. Garnet-poor (2 vol.%) peridotite preserves inclusions of carbonated potassic silicate melt within Zn-poor chromite (<400 ppm) in the clinopyroxene-free harzburgite assemblage that equilibrated within the hot mantle wedge (Stage 1, > 1180 °C at 3 GPa). The carbonated potassic silicate melt, which has a major element oxide chemical composition of KO = 5.2 wt.%, CaO = 17 wt.%, MgO = 18 wt.%, CO = 22 wt.%, and SiO = 20 wt.%, contains extremely high concentrations of large ion lithophile elements, similar to kimberlite melts. Peridotites cooled down to ≅800 °C during Stage 2, resulted in the growth of garnet relatively poor in pyrope content, molar Mg/(Mg + Fe + Ca + Mn), (ca. 67 mol.%). This garnet displays a sinusoidal REE pattern that formed in equilibrium with carbonatitic fluid. Subsequently, subduction of the peridotite resulted in the formation of garnet with a slightly higher pyrope content (70 mol.%) during the Variscan subduction Stage 3 (950 °C, 2.9 GPa). These data suggest the following scenario for the generation of melt in the mantle wedge. Primarily, infiltration of sediment-derived potassic carbonatite melt into the deep mantle wedge resulted in the growth of phlogopite and carbonate/diamond. Formation of volatile-bearing minerals lowered the density and strength of the peridotite. Finally, phlogopite-bearing carbonated peridotite rose as diapirs in the mantle wedge to form carbonated potassic silicate melts at the base of the overriding lithosphere.

摘要

浅部氧化的软流圈可能含有一小部分富含不相容微量元素和挥发物的钾质硅酸盐熔体。在此,为了确定此类熔体的化学成分,我们分析了来自波希米亚地块造山石榴石橄榄岩的、以多相固体包裹体形式保存的石化熔体包裹体。贫石榴石(2体积%)橄榄岩在无单斜辉石的方辉橄榄岩组合中保存了碳酸化钾质硅酸盐熔体包裹体,该组合中的贫锌铬铁矿(<400 ppm)在热地幔楔(阶段1,3 GPa下>1180°C)内达到平衡。碳酸化钾质硅酸盐熔体的主要元素氧化物化学成分是:KO = 5.2 wt.%、CaO = 17 wt.%、MgO = 18 wt.%、CO = 22 wt.%、SiO = 20 wt.%,含有极高浓度的大离子亲石元素,类似于金伯利岩熔体。橄榄岩在阶段2冷却至约800°C,导致石榴石生长,其镁铝榴石含量、摩尔Mg/(Mg + Fe + Ca + Mn)相对较低(约67 mol.%)。这种石榴石呈现出与碳酸岩流体平衡形成的正弦REE模式。随后,在华力西俯冲阶段3(950°C,2.9 GPa),橄榄岩的俯冲导致形成了镁铝榴石含量略高(70 mol.%)的石榴石。这些数据表明了地幔楔中熔体生成的如下情况。首先,源自沉积物的钾质碳酸岩熔体渗入深部地幔楔导致金云母和碳酸盐/金刚石的生长。含挥发物矿物的形成降低了橄榄岩的密度和强度。最后,含金云母的碳酸化橄榄岩以底辟形式在地幔楔中上升,在仰冲岩石圈底部形成碳酸化钾质硅酸盐熔体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/738b/6031665/17b6bff81b1e/41598_2018_28264_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验