Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.
Nature. 2013 Jan 10;493(7431):241-5. doi: 10.1038/nature11781.
Insulin receptor signalling has a central role in mammalian biology, regulating cellular metabolism, growth, division, differentiation and survival. Insulin resistance contributes to the pathogenesis of type 2 diabetes mellitus and the onset of Alzheimer's disease; aberrant signalling occurs in diverse cancers, exacerbated by cross-talk with the homologous type 1 insulin-like growth factor receptor (IGF1R). Despite more than three decades of investigation, the three-dimensional structure of the insulin-insulin receptor complex has proved elusive, confounded by the complexity of producing the receptor protein. Here we present the first view, to our knowledge, of the interaction of insulin with its primary binding site on the insulin receptor, on the basis of four crystal structures of insulin bound to truncated insulin receptor constructs. The direct interaction of insulin with the first leucine-rich-repeat domain (L1) of insulin receptor is seen to be sparse, the hormone instead engaging the insulin receptor carboxy-terminal α-chain (αCT) segment, which is itself remodelled on the face of L1 upon insulin binding. Contact between insulin and L1 is restricted to insulin B-chain residues. The αCT segment displaces the B-chain C-terminal β-strand away from the hormone core, revealing the mechanism of a long-proposed conformational switch in insulin upon receptor engagement. This mode of hormone-receptor recognition is novel within the broader family of receptor tyrosine kinases. We support these findings by photo-crosslinking data that place the suggested interactions into the context of the holoreceptor and by isothermal titration calorimetry data that dissect the hormone-insulin receptor interface. Together, our findings provide an explanation for a wealth of biochemical data from the insulin receptor and IGF1R systems relevant to the design of therapeutic insulin analogues.
胰岛素受体信号转导在哺乳动物生物学中起着核心作用,调节细胞代谢、生长、分裂、分化和存活。胰岛素抵抗是 2 型糖尿病和阿尔茨海默病发病机制的原因;异常信号转导发生在多种癌症中,并因与同源的 1 型胰岛素样生长因子受体(IGF1R)的交叉对话而加剧。尽管经过三十多年的研究,胰岛素-胰岛素受体复合物的三维结构仍然难以捉摸,这是由于产生受体蛋白的复杂性造成的。在这里,我们基于四个胰岛素与截断的胰岛素受体结构域结合的晶体结构,首次展示了胰岛素与其在胰岛素受体上的主要结合位点相互作用的观点。我们发现,胰岛素与胰岛素受体第一个富含亮氨酸重复结构域(L1)的直接相互作用很少,而是与胰岛素受体羧基末端α链(αCT)段结合,该段在胰岛素结合时自身在 L1 面上重塑。胰岛素与 L1 的接触仅限于胰岛素 B 链残基。αCT 段将 B 链 C 末端β-链从激素核心推开,揭示了胰岛素在与受体结合时长期提出的构象转换的机制。这种激素-受体识别模式在受体酪氨酸激酶家族中是新颖的。我们通过光交联数据支持这些发现,这些数据将建议的相互作用置于完整受体的背景下,并通过等温滴定量热法数据解析激素-胰岛素受体界面。总之,我们的研究结果为与治疗性胰岛素类似物设计相关的胰岛素受体和 IGF1R 系统的大量生化数据提供了一个解释。