Tsou Jo-Chu, Tsou Chun-Ju, Wang Chun-Hsiung, Ko An-Li A, Wang Yi-Hui, Liang Huan-Hsuan, Sun Jia-Cheng, Huang Kai-Fa, Ko Tzu-Ping, Lin Shu-Yu, Wang Yane-Shih
Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.
Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.
J Am Chem Soc. 2024 Dec 11;146(49):33309-33315. doi: 10.1021/jacs.4c14446. Epub 2024 Nov 5.
Histidine modifications of proteins are broadly based on chemical methods triggering N-substitution reactions such as aza-Michael addition at histidine's moderately nucleophilic imidazole side chain. While recent studies have demonstrated chemoselective, histidine-specific modifications by further exploiting imidazole's electrophilic reactivity to overcome interference from the more nucleophilic lysine and cysteine, achieving site-specific histidine modifications remains a major challenge due to the absence of spatial control over chemical processes. Herein, through X-ray crystallography and cryo-electron microscopy structural studies, we describe the rational design of a nature-inspired, noncanonical amino-acid-incorporated, human ferritin-based metalloenzyme that is capable of introducing site-specific post-translational modifications (PTMs) to histidine in peptides and proteins. Specifically, chemoenzymatic aza-Michael additions on single histidine residues were carried out on eight protein substrates ranging from 10 to 607 amino acids including the insulin peptide hormone. By introducing an insulin-targeting peptide into our metalloenzyme, we further directed modifications to be carried out site-specifically on insulin's B-chain histidine 5. The success of this biocatalysis platform outlines a novel approach in introducing residue- and, moreover, site-specific post-translational modifications to peptides and proteins, which may further enable reactions to be carried out .
蛋白质的组氨酸修饰广泛基于引发N-取代反应的化学方法,例如在组氨酸中等亲核性的咪唑侧链上进行氮杂迈克尔加成反应。虽然最近的研究通过进一步利用咪唑的亲电反应性以克服来自亲核性更强的赖氨酸和半胱氨酸的干扰,证明了化学选择性的、组氨酸特异性的修饰,但由于缺乏对化学过程的空间控制,实现位点特异性组氨酸修饰仍然是一项重大挑战。在此,通过X射线晶体学和冷冻电子显微镜结构研究,我们描述了一种受自然启发、掺入非天然氨基酸的、基于人铁蛋白的金属酶的合理设计,该金属酶能够对肽和蛋白质中的组氨酸进行位点特异性的翻译后修饰(PTM)。具体而言,在包括胰岛素肽激素在内的8种10至607个氨基酸的蛋白质底物上,对单个组氨酸残基进行了化学酶促氮杂迈克尔加成反应。通过将胰岛素靶向肽引入我们的金属酶中,我们进一步指导修饰在胰岛素B链的组氨酸5上进行位点特异性修饰。这个生物催化平台的成功概述了一种对肽和蛋白质引入残基特异性以及位点特异性翻译后修饰的新方法,这可能进一步使反应能够进行。