Suppr超能文献

化学生物基因组学分析——对药物发现的启示。

A chemogenomic analysis of ionization constants--implications for drug discovery.

机构信息

Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.

出版信息

ChemMedChem. 2013 Feb;8(2):242-55. doi: 10.1002/cmdc.201200507. Epub 2013 Jan 9.

Abstract

Chemogenomics methods seek to characterize the interaction between drugs and biological systems and are an important guide for the selection of screening compounds. The acid/base character of drugs has a profound influence on their affinity for the receptor, on their absorption, distribution, metabolism, excretion and toxicity (ADMET) profile and the way the drug can be formulated. In particular, the charge state of a molecule greatly influences its lipophilicity and biopharmaceutical characteristics. This study investigates the acid/base profile of human small-molecule drugs, chemogenomics datasets and screening compounds including a natural products set. We estimate the acid-ionization constant (pK(a)) values of these compounds and determine the identity of the ionizable functional groups in each set. We find substantial differences in acid/base profiles of the chemogenomic classes. In many cases, these differences can be linked to the nature of the target binding site and the corresponding functional groups needed for recognition of the ligand. Clear differences are also observed between the acid/base characteristics of drugs and screening compounds. For example, the proportion of drugs containing a carboxylic acid was 20 %, in stark contrast to a value of 2.4 % for the screening set sample. The proportion of aliphatic amines was 27 % for drugs and only 3.4 % for screening compounds. This suggests that there is a mismatch between commercially available screening compounds and the compounds that are likely to interact with a given chemogenomic target family. Our analysis provides a guide for the selection of screening compounds to better target specific chemogenomic families with regard to the overall balance of acids, bases and pK(a) distributions.

摘要

化学生物基因组学方法旨在研究药物与生物系统之间的相互作用,是筛选化合物选择的重要指导。药物的酸碱特性对其与受体的亲和力、吸收、分布、代谢、排泄和毒性(ADMET)特征以及药物的制剂方式有深远影响。特别是,分子的电荷状态极大地影响其亲脂性和生物制药特性。本研究调查了人类小分子药物、化学生物基因组学数据集和筛选化合物(包括天然产物集)的酸碱特性。我们估计了这些化合物的酸离解常数(pK(a))值,并确定了每个集合中可离解官能团的身份。我们发现化学生物基因组学类别的酸碱特性存在显著差异。在许多情况下,这些差异可以与靶结合位点的性质以及识别配体所需的相应官能团联系起来。药物和筛选化合物之间的酸碱特性也存在明显差异。例如,含有羧酸的药物比例为 20%,而筛选集样本的比例仅为 2.4%。药物中的脂肪族胺比例为 27%,而筛选化合物的比例仅为 3.4%。这表明,商业上可用的筛选化合物与可能与特定化学生物基因组靶家族相互作用的化合物之间存在不匹配。我们的分析为筛选化合物的选择提供了指导,以便更好地针对特定的化学生物基因组家族,考虑到酸、碱和 pK(a)分布的整体平衡。

相似文献

1
A chemogenomic analysis of ionization constants--implications for drug discovery.
ChemMedChem. 2013 Feb;8(2):242-55. doi: 10.1002/cmdc.201200507. Epub 2013 Jan 9.
2
The acid-base profile of a contemporary set of drugs: implications for drug discovery.
SAR QSAR Environ Res. 2009 Oct;20(7-8):611-55. doi: 10.1080/10629360903438313.
3
Analysis of the Acid/Base Profile of Natural Products from Different Sources.
Mol Inform. 2020 Mar;39(3):e1900099. doi: 10.1002/minf.201900099. Epub 2019 Sep 26.
4
The pK(a) Distribution of Drugs: Application to Drug Discovery.
Perspect Medicin Chem. 2007 Sep 17;1:25-38.
5
The significance of acid/base properties in drug discovery.
Chem Soc Rev. 2013 Jan 21;42(2):485-96. doi: 10.1039/c2cs35348b.
6
Characterization of the Chemical Space of Known and Readily Obtainable Natural Products.
J Chem Inf Model. 2018 Aug 27;58(8):1518-1532. doi: 10.1021/acs.jcim.8b00302. Epub 2018 Aug 1.
7
A screening pattern recognition method finds new and divergent targets for drugs and natural products.
ACS Chem Biol. 2014 Jul 18;9(7):1622-31. doi: 10.1021/cb5001839. Epub 2014 Jun 2.
8
Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening.
Curr Top Med Chem. 2012;12(14):1500-13. doi: 10.2174/156802612802652466.
10
Expanding the medicinally relevant chemical space with compound libraries.
Drug Discov Today. 2012 Jul;17(13-14):718-26. doi: 10.1016/j.drudis.2012.04.001. Epub 2012 Apr 10.

引用本文的文献

1
Synthesis of tertiary alkyl amines via photoinduced copper-catalysed nucleophilic substitution.
Nat Chem. 2025 Feb;17(2):271-278. doi: 10.1038/s41557-024-01692-w. Epub 2025 Jan 3.
2
GR-pKa: a message-passing neural network with retention mechanism for pKa prediction.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae408.
3
Kinetically-Controlled Ni-Catalyzed Direct Carboxylation of Unactivated Secondary Alkyl Bromides without Chain Walking.
J Am Chem Soc. 2024 Jan 24;146(3):1753-1759. doi: 10.1021/jacs.3c11205. Epub 2024 Jan 9.
5
In vitro pH dependent passive transport of ketoprofen and metformin.
ADMET DMPK. 2020 Dec 9;9(1):57-68. doi: 10.5599/admet.916. eCollection 2021.
6
Overview of the SAMPL6 pK challenge: evaluating small molecule microscopic and macroscopic pK predictions.
J Comput Aided Mol Des. 2021 Feb;35(2):131-166. doi: 10.1007/s10822-020-00362-6. Epub 2021 Jan 4.
7
Dynamic Protonation Dramatically Affects the Membrane Permeability of Drug-like Molecules.
J Am Chem Soc. 2019 Aug 28;141(34):13421-13433. doi: 10.1021/jacs.9b04387. Epub 2019 Aug 16.
8
Molecular Dynamics Simulations of Membrane Permeability.
Chem Rev. 2019 May 8;119(9):5954-5997. doi: 10.1021/acs.chemrev.8b00486. Epub 2019 Feb 12.
9
High throughput methods to measure the propensity of compounds to form intramolecular hydrogen bonding.
Medchemcomm. 2017 Apr 27;8(6):1143-1151. doi: 10.1039/c7md00101k. eCollection 2017 Jun 1.
10
Monoselective o-C-H Functionalizations of Mandelic Acid and α-Phenylglycine.
J Am Chem Soc. 2015 Aug 12;137(31):9877-84. doi: 10.1021/jacs.5b04324. Epub 2015 Jul 30.

本文引用的文献

1
The significance of acid/base properties in drug discovery.
Chem Soc Rev. 2013 Jan 21;42(2):485-96. doi: 10.1039/c2cs35348b.
3
ZINC: a free tool to discover chemistry for biology.
J Chem Inf Model. 2012 Jul 23;52(7):1757-68. doi: 10.1021/ci3001277. Epub 2012 Jun 15.
4
Critical Compilation of pK(a) Values for Pharmaceutical Substances.
Profiles Drug Subst Excip Relat Methodol. 2007;33:1-33. doi: 10.1016/S0099-5428(07)33001-3. Epub 2007 Nov 21.
5
The influence of the 'organizational factor' on compound quality in drug discovery.
Nat Rev Drug Discov. 2011 Sep 30;10(10):749-65. doi: 10.1038/nrd3552.
7
Probing the links between in vitro potency, ADMET and physicochemical parameters.
Nat Rev Drug Discov. 2011 Mar;10(3):197-208. doi: 10.1038/nrd3367.
9
Factor Xa inhibitors: next-generation antithrombotic agents.
J Med Chem. 2010 Sep 9;53(17):6243-74. doi: 10.1021/jm100146h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验