Department of Chemistry, James Frank Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States.
J Am Chem Soc. 2019 Aug 28;141(34):13421-13433. doi: 10.1021/jacs.9b04387. Epub 2019 Aug 16.
Permeability () across biological membranes is of fundamental importance and a key factor in drug absorption, distribution, and development. Although the majority of drugs will be charged at some point during oral delivery, our understanding of membrane permeation by charged species is limited. The canonical model assumes that only neutral molecules partition into and passively permeate across membranes, but there is mounting evidence that these processes are also facile for certain charged species. However, it is unknown whether such ionizable permeants dynamically neutralize at the membrane surface or permeate in their charged form. To probe protonation-coupled permeation in atomic detail, we herein apply continuous constant-pH molecular dynamics along with free energy sampling to study the permeation of a weak base propranolol (PPL), and evaluate the impact of including dynamic protonation on . The simulations reveal that PPL dynamically neutralizes at the lipid-tail interface, which dramatically influences the permeation free energy landscape and explains why the conventional model overestimates the assigned intrinsic permeability. We demonstrate how fixed-charge-state simulations can account for this effect, and propose a revised model that better describes pH-coupled partitioning and permeation. Our results demonstrate how dynamic changes in protonation state may play a critical role in the permeation of ionizable molecules, including pharmaceuticals and drug-like molecules, thus requiring a revision of the standard picture.
生物膜的通透性对于药物的吸收、分布和开发至关重要,它是一个基本的因素。尽管在口服给药的过程中,大多数药物都会在某个时候带电,但我们对带电物质通过膜的渗透的理解是有限的。经典模型假设只有中性分子才能分配并被动地渗透穿过膜,但越来越多的证据表明,这些过程对某些带电物质也很容易发生。然而,目前还不清楚这些可电离的透质物是在膜表面动态中和还是以其带电形式渗透。为了在原子细节上探测质子化偶联渗透,我们在此应用连续恒 pH 分子动力学以及自由能采样来研究弱碱普萘洛尔(PPL)的渗透,并评估包括动态质子化对 的影响。模拟结果表明,PPL 在脂质尾部界面处动态中和,这极大地影响了渗透自由能景观,并解释了为什么传统模型高估了分配的固有渗透率。我们展示了如何使用固定电荷状态模拟来解释这种影响,并提出了一个更好地描述 pH 偶联分配和渗透的修正模型。我们的结果表明,质子化状态的动态变化如何在可电离分子的渗透中起着关键作用,包括药物和类药物分子,因此需要对标准模型进行修正。