School of Health and Population Sciences, University of Birmingham, Public Health Building, Edgbaston, Birmingham, B15 2TT, UK.
Stat Med. 2013 Jul 20;32(16):2747-66. doi: 10.1002/sim.5726. Epub 2013 Jan 10.
We describe methods for meta-analysis of randomised trials where a continuous outcome is of interest, such as blood pressure, recorded at both baseline (pre treatment) and follow-up (post treatment). We used four examples for illustration, covering situations with and without individual participant data (IPD) and with and without baseline imbalance between treatment groups in each trial. Given IPD, meta-analysts can choose to synthesise treatment effect estimates derived using analysis of covariance (ANCOVA), a regression of just final scores, or a regression of the change scores. When there is baseline balance in each trial, treatment effect estimates derived using ANCOVA are more precise and thus preferred. However, we show that meta-analysis results for the summary treatment effect are similar regardless of the approach taken. Thus, without IPD, if trials are balanced, reviewers can happily utilise treatment effect estimates derived from any of the approaches. However, when some trials have baseline imbalance, meta-analysts should use treatment effect estimates derived from ANCOVA, as this adjusts for imbalance and accounts for the correlation between baseline and follow-up; we show that the other approaches can give substantially different meta-analysis results. Without IPD and with unavailable ANCOVA estimates, reviewers should limit meta-analyses to those trials with baseline balance. Trowman's method to adjust for baseline imbalance without IPD performs poorly in our examples and so is not recommended. Finally, we extend the ANCOVA model to estimate the interaction between treatment effect and baseline values and compare options for estimating this interaction given only aggregate data.
我们描述了用于荟萃分析随机试验的方法,这些试验的主要结局是感兴趣的连续变量,例如血压,分别在基线(治疗前)和随访(治疗后)记录。我们使用了四个示例来说明,涵盖了有和没有个体参与者数据(IPD)的情况,以及每个试验中治疗组之间基线是否存在不平衡的情况。给定 IPD,荟萃分析人员可以选择综合使用协方差分析(ANCOVA)、仅最终评分的回归或变化评分的回归得出的治疗效果估计值。在每个试验中均存在基线平衡时,使用 ANCOVA 得出的治疗效果估计值更准确,因此更受青睐。但是,我们表明,无论采用哪种方法,汇总治疗效果的荟萃分析结果都相似。因此,在没有 IPD 的情况下,如果试验平衡,审稿人可以愉快地使用任何方法得出的治疗效果估计值。但是,当一些试验存在基线不平衡时,荟萃分析人员应使用来自 ANCOVA 的治疗效果估计值,因为这可以调整不平衡并考虑到基线和随访之间的相关性;我们表明,其他方法可以得出大不相同的荟萃分析结果。在没有 IPD 和无法获取 ANCOVA 估计值的情况下,审稿人应将荟萃分析限于基线平衡的试验。在我们的示例中,没有 IPD 时调整基线不平衡的 Trowman 方法表现不佳,因此不建议使用。最后,我们将 ANCOVA 模型扩展到估计治疗效果和基线值之间的交互作用,并比较仅使用汇总数据估计这种交互作用的选项。