Suppr超能文献

连续结局的荟萃分析:使用从汇总数据中创建的伪个体数据来调整基线不平衡并评估治疗-基线交互作用。

Meta-analysis of continuous outcomes: Using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment-by-baseline modification.

机构信息

Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.

Data Science and Biometrics, Danone Nutricia Research, Utrecht, The Netherlands.

出版信息

Res Synth Methods. 2020 Nov;11(6):780-794. doi: 10.1002/jrsm.1434. Epub 2020 Jul 25.

Abstract

Meta-analysis of individual participant data (IPD) is considered the "gold-standard" for synthesizing clinical study evidence. However, gaining access to IPD can be a laborious task (if possible at all) and in practice only summary (aggregate) data are commonly available. In this work we focus on meta-analytic approaches of comparative studies where aggregate data are available for continuous outcomes measured at baseline (pre-treatment) and follow-up (post-treatment). We propose a method for constructing pseudo individual baselines and outcomes based on the aggregate data. These pseudo IPD can be subsequently analysed using standard analysis of covariance (ANCOVA) methods. Pseudo IPD for continuous outcomes reported at two timepoints can be generated using the sufficient statistics of an ANCOVA model, i.e., the mean and standard deviation at baseline and follow-up per group, together with the correlation of the baseline and follow-up measurements. Applying the ANCOVA approach, which crucially adjusts for baseline imbalances and accounts for the correlation between baseline and change scores, to the pseudo IPD, results in identical estimates to the ones obtained by an ANCOVA on the true IPD. In addition, an interaction term between baseline and treatment effect can be added. There are several modeling options available under this approach, which makes it very flexible. Methods are exemplified using reported data of a previously published IPD meta-analysis of 10 trials investigating the effect of antihypertensive treatments on systolic blood pressure, leading to identical results compared with the true IPD analysis and of a meta-analysis of fewer trials, where baseline imbalance occurred.

摘要

对个体参与者数据(IPD)进行荟萃分析被认为是综合临床研究证据的“金标准”。然而,获取 IPD 可能是一项费力的任务(如果可能的话),实际上通常只有汇总(聚合)数据可用。在这项工作中,我们专注于比较研究的荟萃分析方法,其中聚合数据可用于基线(治疗前)和随访(治疗后)测量的连续结局。我们提出了一种基于聚合数据构建伪个体基线和结局的方法。这些伪 IPD 可以随后使用标准协方差分析(ANCOVA)方法进行分析。对于在两个时间点报告的连续结局,可以使用 ANCOVA 模型的充分统计量生成伪 IPD,即每组的基线和随访时的均值和标准差,以及基线和随访测量之间的相关性。对伪 IPD 应用至关重要的 ANCOVA 方法,该方法调整了基线不平衡并考虑了基线和变化分数之间的相关性,结果与对真实 IPD 进行的 ANCOVA 得到的估计值相同。此外,还可以添加基线和治疗效果之间的交互项。该方法有多种建模选择,使其非常灵活。该方法使用以前发表的 IPD 荟萃分析中报告的数据进行了示例,该分析研究了降压治疗对收缩压的影响,与真实 IPD 分析和较少试验的荟萃分析得出了相同的结果,在后者中出现了基线不平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1769/7754323/ac97f6fcbc6c/JRSM-11-780-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验