Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA99352, USA.
Proteomics. 2013 Mar;13(5):766-70. doi: 10.1002/pmic.201200096. Epub 2013 Feb 4.
For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types.
对于自下而上的蛋白质组学,有各种各样的数据库搜索算法可用于将肽序列与串联 MS 光谱匹配。同样,也有许多策略被用来从不同的搜索算法输出中生成可信的肽鉴定列表。在这里,我们引入了一种网格搜索方法,用于确定 shotgun 蛋白质组学数据分析中最佳的数据库过滤标准,该方法易于适应任何搜索。系统试验和错误参数选择(称为 STEPS)利用用户定义的参数范围来测试广泛的参数组合,以找到用于数据过滤的最佳“参数集”,从而最大限度地提高可信鉴定。使用源自免疫亲和 depleted 血清和细菌细胞裂解物的数据集,两种常见的蛋白质组学样本类型,展示了这种方法在真阳性鉴定数量方面的优势。