Suppr超能文献

扩展光谱库的覆盖范围:一种基于邻近关系预测肽段碎裂谱强度的方法。

Extending the coverage of spectral libraries: a neighbor-based approach to predicting intensities of peptide fragmentation spectra.

机构信息

Department of Biology, Indiana University, Bloomington, IN 47405, USA.

出版信息

Proteomics. 2013 Mar;13(5):756-65. doi: 10.1002/pmic.201100670. Epub 2013 Feb 4.

Abstract

Searching spectral libraries in MS/MS is an important new approach to improving the quality of peptide and protein identification. The idea relies on the observation that ion intensities in an MS/MS spectrum of a given peptide are generally reproducible across experiments, and thus, matching between spectra from an experiment and the spectra of previously identified peptides stored in a spectral library can lead to better peptide identification compared to the traditional database search. However, the use of libraries is greatly limited by their coverage of peptide sequences: even for well-studied organisms a large fraction of peptides have not been previously identified. To address this issue, we propose to expand spectral libraries by predicting the MS/MS spectra of peptides based on the spectra of peptides with similar sequences. We first demonstrate that the intensity patterns of dominant fragment ions between similar peptides tend to be similar. In accordance with this observation, we develop a neighbor-based approach that first selects peptides that are likely to have spectra similar to the target peptide and then combines their spectra using a weighted K-nearest neighbor method to accurately predict fragment ion intensities corresponding to the target peptide. This approach has the potential to predict spectra for every peptide in the proteome. When rigorous quality criteria are applied, we estimate that the method increases the coverage of spectral libraries available from the National Institute of Standards and Technology by 20-60%, although the values vary with peptide length and charge state. We find that the overall best search performance is achieved when spectral libraries are supplemented by the high quality predicted spectra.

摘要

在 MS/MS 中搜索光谱库是提高肽和蛋白质鉴定质量的一种重要新方法。其基本思想是基于这样的观察:给定肽的 MS/MS 光谱中的离子强度通常在实验中具有可再现性,因此,与实验中获得的光谱与存储在光谱库中的先前鉴定的肽的光谱之间的匹配可以比传统的数据库搜索产生更好的肽鉴定。然而,库的使用受到肽序列覆盖度的极大限制:即使对于研究充分的生物体,也有很大一部分肽尚未被鉴定。为了解决这个问题,我们建议通过基于具有相似序列的肽的光谱来预测肽的 MS/MS 光谱,从而扩展光谱库。我们首先证明,相似肽之间的主要碎片离子的强度模式往往相似。根据这一观察结果,我们开发了一种基于邻居的方法,该方法首先选择可能具有与目标肽相似光谱的肽,然后使用加权 K-最近邻方法将它们的光谱组合在一起,以准确预测与目标肽对应的碎片离子强度。该方法有可能预测蛋白质组中的每个肽的光谱。当应用严格的质量标准时,我们估计该方法将国家标准与技术研究院提供的光谱库的覆盖范围增加了 20-60%,尽管肽的长度和电荷状态不同,值也有所不同。我们发现,当光谱库辅以高质量的预测光谱时,整体最佳搜索性能得以实现。

相似文献

2
A semi-empirical approach for predicting unobserved peptide MS/MS spectra from spectral libraries.
Proteomics. 2011 Dec;11(24):4702-11. doi: 10.1002/pmic.201100316. Epub 2011 Nov 23.
3
Building and searching tandem mass (MS/MS) spectral libraries for peptide identification in proteomics.
Methods. 2011 Aug;54(4):424-31. doi: 10.1016/j.ymeth.2011.01.007. Epub 2011 Jan 28.
4
Spectral Library Search Improves Assignment of TMT Labeled MS/MS Spectra.
J Proteome Res. 2018 Sep 7;17(9):3325-3331. doi: 10.1021/acs.jproteome.8b00594. Epub 2018 Aug 16.
6
A simulated MS/MS library for spectrum-to-spectrum searching in large scale identification of proteins.
Mol Cell Proteomics. 2009 Apr;8(4):857-69. doi: 10.1074/mcp.M800384-MCP200. Epub 2008 Dec 22.
8
Denoising peptide tandem mass spectra for spectral libraries: a Bayesian approach.
J Proteome Res. 2013 Jul 5;12(7):3223-32. doi: 10.1021/pr400080b. Epub 2013 Jun 6.
9
Spectrum-to-spectrum searching using a proteome-wide spectral library.
Mol Cell Proteomics. 2011 Jul;10(7):M111.007666. doi: 10.1074/mcp.M111.007666. Epub 2011 Apr 30.
10
Tandem mass spectrometry spectral libraries and library searching.
Methods Mol Biol. 2011;696:225-32. doi: 10.1007/978-1-60761-987-1_13.

引用本文的文献

1
MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
BMC Genomics. 2019 Dec 24;20(Suppl 9):906. doi: 10.1186/s12864-019-6297-6.
2
Impact of Amidination on Peptide Fragmentation and Identification in Shotgun Proteomics.
J Proteome Res. 2016 Oct 7;15(10):3656-3665. doi: 10.1021/acs.jproteome.6b00468. Epub 2016 Sep 27.
3
Quantitative Comparison of Tandem Mass Spectra Obtained on Various Instruments.
J Am Soc Mass Spectrom. 2016 Aug;27(8):1357-65. doi: 10.1007/s13361-016-1408-y. Epub 2016 May 20.

本文引用的文献

1
Computational approaches to protein inference in shotgun proteomics.
BMC Bioinformatics. 2012;13 Suppl 16(Suppl 16):S4. doi: 10.1186/1471-2105-13-S16-S4. Epub 2012 Nov 5.
2
A semi-empirical approach for predicting unobserved peptide MS/MS spectra from spectral libraries.
Proteomics. 2011 Dec;11(24):4702-11. doi: 10.1002/pmic.201100316. Epub 2011 Nov 23.
3
Spectrum-to-spectrum searching using a proteome-wide spectral library.
Mol Cell Proteomics. 2011 Jul;10(7):M111.007666. doi: 10.1074/mcp.M111.007666. Epub 2011 Apr 30.
4
Large improvements in MS/MS-based peptide identification rates using a hybrid analysis.
J Proteome Res. 2011 May 6;10(5):2306-17. doi: 10.1021/pr101130b. Epub 2011 Mar 30.
6
SQID: an intensity-incorporated protein identification algorithm for tandem mass spectrometry.
J Proteome Res. 2011 Apr 1;10(4):1593-602. doi: 10.1021/pr100959y. Epub 2011 Feb 23.
7
On the accuracy and limits of peptide fragmentation spectrum prediction.
Anal Chem. 2011 Feb 1;83(3):790-6. doi: 10.1021/ac102272r. Epub 2010 Dec 22.
8
9
How does multiple testing correction work?
Nat Biotechnol. 2009 Dec;27(12):1135-7. doi: 10.1038/nbt1209-1135.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验