Suppr超能文献

用于蛋白质组学中基于光谱库搜索的错误发现率估计的人工诱饵光谱库。

Artificial decoy spectral libraries for false discovery rate estimation in spectral library searching in proteomics.

机构信息

Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.

出版信息

J Proteome Res. 2010 Jan;9(1):605-10. doi: 10.1021/pr900947u.

Abstract

The challenge of estimating false discovery rates (FDR) in peptide identification from MS/MS spectra has received increased attention in proteomics. The simple approach of target-decoy searching has become popular with traditional sequence (database) searching methods, but has yet to be practiced in spectral (library) searching, an emerging alternative to sequence searching. We extended this target-decoy searching approach to spectral searching by developing and validating a robust method to generate realistic, but unnatural, decoy spectra. Our method involves randomly shuffling the peptide identification of each reference spectrum in the library, and repositioning each fragment ion peak along the m/z axis to match the fragment ions expected from the shuffled sequence. We show that this method produces decoy spectra that are sufficiently realistic, such that incorrect identifications are equally likely to match real and decoy spectra, a key assumption necessary for decoy counting. This approach has been implemented in the open-source library building software, SpectraST.

摘要

从 MS/MS 谱图中鉴定肽段时估计错误发现率(FDR)是蛋白质组学中备受关注的问题。目标-诱饵搜索的简单方法已经在传统的序列(数据库)搜索方法中得到了广泛应用,但尚未在光谱(库)搜索中得到应用,而光谱搜索是序列搜索的一种新兴替代方法。我们通过开发和验证一种生成逼真但非自然的诱饵谱的稳健方法,将这种目标-诱饵搜索方法扩展到光谱搜索中。我们的方法涉及随机打乱库中每个参考谱的肽鉴定,并沿着 m/z 轴重新定位每个片段离子峰,以匹配从打乱序列中预期的片段离子。我们表明,该方法产生的诱饵谱非常逼真,以至于错误鉴定与真实和诱饵谱一样有可能匹配,这是诱饵计数所必需的关键假设。这种方法已经在开源的库构建软件 SpectraST 中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验