Centre for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany.
Plant Cell. 2013 Jan;25(1):102-14. doi: 10.1105/tpc.112.104331. Epub 2013 Jan 9.
Phytochromes are plant photoreceptors important for development and adaptation to the environment. Phytochrome A (PHYA) is essential for the far-red (FR) high-irradiance responses (HIRs), which are of particular ecological relevance as they enable plants to establish under shade conditions. PHYA and HIRs have been considered unique to seed plants because the divergence of seed plants and cryptogams (e.g., ferns and mosses) preceded the evolution of PHYA. Seed plant phytochromes translocate into the nucleus and regulate gene expression. By contrast, there has been little evidence of a nuclear localization and function of cryptogam phytochromes. Here, we identified responses to FR light in cryptogams, which are highly reminiscent of PHYA signaling in seed plants. In the moss Physcomitrella patens and the fern Adiantum capillus-veneris, phytochromes accumulate in the nucleus in response to light. Although P. patens phytochromes evolved independently of PHYA, we have found that one clade of P. patens phytochromes exhibits the molecular properties of PHYA. We suggest that HIR-like responses had evolved in the last common ancestor of modern seed plants and cryptogams and that HIR signaling is more ancient than PHYA. Thus, other phytochromes in seed plants may have lost the capacity to mediate HIRs during evolution, rather than that PHYA acquired it.
光敏色素是植物中重要的光受体,对于植物的发育和适应环境具有重要作用。光敏色素 A(PHYA)对于远红光(FR)高光强反应(HIR)至关重要,因为这些反应使植物能够在阴凉条件下建立。PHYA 和 HIR 被认为是种子植物所特有的,因为种子植物和隐花植物(例如蕨类植物和苔藓植物)的分化先于 PHYA 的进化。种子植物的光敏色素会转位到细胞核中,并调节基因表达。相比之下,隐花植物光敏色素的核定位和功能的证据很少。在这里,我们在隐花植物中鉴定出了对 FR 光的反应,这些反应与种子植物中 PHYA 信号非常相似。在苔藓植物 Physcomitrella patens 和蕨类植物 Adiantum capillus-veneris 中,光敏色素会在光的作用下积累到细胞核中。尽管 P. patens 光敏色素的进化与 PHYA 无关,但我们发现 P. patens 光敏色素的一个分支具有 PHYA 的分子特性。我们认为,类似于 HIR 的反应在现代种子植物和隐花植物的最后共同祖先中就已经进化出来了,而且 HIR 信号比 PHYA 更为古老。因此,在进化过程中,种子植物中的其他光敏色素可能已经失去了介导 HIR 的能力,而不是 PHYA 获得了这种能力。