黑皮质素-4 受体通过蛋白激酶 A 依赖的机制调节海马突触可塑性。
Melanocortin-4 receptor regulates hippocampal synaptic plasticity through a protein kinase A-dependent mechanism.
机构信息
Division of Life Science, Molecular Neuroscience Center and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
出版信息
J Neurosci. 2013 Jan 9;33(2):464-72. doi: 10.1523/JNEUROSCI.3282-12.2013.
Learning and memory require orchestrated regulation of both structural and functional synaptic plasticity in the hippocampus. While a neuropeptide alpha-melanocyte-stimulating hormone, α-MSH, has been implicated in memory acquisition and retention, the functional role of its cognate receptor, melanocortin-4 receptor (MC4R), in hippocampal-dependent synaptic plasticity has not been explored. In this study, we report that activation of MC4R enhances synaptic plasticity through the regulation of dendritic spine morphology and abundance of AMPA receptors. We show that activation of postsynaptic MC4R increases the number of mature dendritic spines and enhances surface expression of AMPA receptor subunit GluA1, resulting in synaptic accumulation of GluA1-containing AMPA receptors. Moreover, MC4R stimulates surface GluA1 trafficking through phosphorylation of GluA1 at Ser845 in a Gα(s)-cAMP/PKA-dependent manner. Blockade of protein kinase A (PKA) signaling abolishes the MC4R-mediated enhancement of neurotransmission and hippocampal long-term potentiation. Importantly, in vivo application of MC4R agonists increases LTP in the mouse hippocampal CA1 region. These findings reveal that MC4R in the hippocampus plays a critical role in the regulation of structural and functional plasticity.
学习和记忆需要协调调节海马体中的结构和功能突触可塑性。虽然促黑素细胞激素 α-MSH 已被牵连到记忆的获得和保留中,但它的同源受体黑素皮质素-4 受体(MC4R)在海马体依赖的突触可塑性中的功能作用尚未得到探索。在这项研究中,我们报告说 MC4R 的激活通过调节树突棘形态和 AMPA 受体的丰度来增强突触可塑性。我们表明,突触后 MC4R 的激活增加了成熟树突棘的数量,并增强了 AMPA 受体亚基 GluA1 的表面表达,从而导致含有 GluA1 的 AMPA 受体在突触处积累。此外,MC4R 通过 Gα(s)-cAMP/PKA 依赖性方式使 GluA1 的 Ser845 磷酸化,从而刺激表面 GluA1 转运。蛋白激酶 A(PKA)信号通路的阻断会消除 MC4R 介导的神经传递和海马体长时程增强作用的增强。重要的是,MC4R 激动剂的体内应用增加了小鼠海马 CA1 区的 LTP。这些发现表明,海马体中的 MC4R 在调节结构和功能可塑性方面起着关键作用。