Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
J Neurosci. 2012 Oct 24;32(43):15036-52. doi: 10.1523/JNEUROSCI.3326-12.2012.
AMPA receptors (AMPARs) are tetrameric ion channels assembled from GluA1-GluA4 subunits that mediate the majority of fast excitatory synaptic transmission in the brain. In the hippocampus, most synaptic AMPARs are composed of GluA1/2 or GluA2/3 with the GluA2 subunit preventing Ca(2+) influx. However, a small number of Ca(2+)-permeable GluA1 homomeric receptors reside in extrasynaptic locations where they can be rapidly recruited to synapses during synaptic plasticity. Phosphorylation of GluA1 S845 by the cAMP-dependent protein kinase (PKA) primes extrasynaptic receptors for synaptic insertion in response to NMDA receptor Ca(2+) signaling during long-term potentiation (LTP), while phosphatases dephosphorylate S845 and remove synaptic and extrasynaptic GluA1 during long-term depression (LTD). PKA and the Ca(2+)-activated phosphatase calcineurin (CaN) are targeted to GluA1 through binding to A-kinase anchoring protein 150 (AKAP150) in a complex with PSD-95, but we do not understand how the opposing activities of these enzymes are balanced to control plasticity. Here, we generated AKAP150ΔPIX knock-in mice to selectively disrupt CaN anchoring in vivo. We found that AKAP150ΔPIX mice lack LTD but express enhanced LTP at CA1 synapses. Accordingly, basal GluA1 S845 phosphorylation is elevated in AKAP150ΔPIX hippocampus, and LTD-induced dephosphorylation and removal of GluA1, AKAP150, and PSD-95 from synapses are impaired. In addition, basal synaptic activity of GluA2-lacking AMPARs is increased in AKAP150ΔPIX mice and pharmacologic antagonism of these receptors restores normal LTD and inhibits the enhanced LTP. Thus, AKAP150-anchored CaN opposes PKA phosphorylation of GluA1 to restrict synaptic incorporation of Ca(2+)-permeable AMPARs both basally and during LTP and LTD.
AMPA 受体 (AMPARs) 是由 GluA1-GluA4 亚基组成的四聚体离子通道,介导大脑中大多数快速兴奋性突触传递。在海马体中,大多数突触 AMPAR 由 GluA1/2 或 GluA2/3 组成,GluA2 亚基阻止 Ca(2+)内流。然而,一小部分 Ca(2+)通透性的 GluA1 同源受体存在于突触外位置,在突触可塑性过程中,它们可以快速招募到突触。cAMP 依赖性蛋白激酶 (PKA) 对 GluA1 S845 的磷酸化使突触外受体对 NMDA 受体 Ca(2+)信号做出反应,从而在长时程增强 (LTP) 时将其突触前插入,而磷酸酶去磷酸化 S845 并在长时程抑制 (LTD) 期间去除突触和突触外 GluA1。PKA 和 Ca(2+)激活的磷酸酶钙调神经磷酸酶 (CaN) 通过与 PSD-95 结合的 AKAP150 与 AKAP150 结合,靶向 GluA1,但我们不了解如何平衡这些酶的拮抗活性来控制可塑性。在这里,我们生成了 AKAP150ΔPIX 敲入小鼠以选择性地在体内破坏 CaN 锚定。我们发现 AKAP150ΔPIX 小鼠缺乏 LTD,但在 CA1 突触处表达增强的 LTP。相应地,AKAP150ΔPIX 海马体中的基础 GluA1 S845 磷酸化升高,并且 LTD 诱导的 GluA1、AKAP150 和 PSD-95 从突触中的去磷酸化和去除受损。此外,AKAP150ΔPIX 小鼠中缺乏 GluA2 的 AMPAR 的基础突触活性增加,并且这些受体的药理学拮抗作用恢复正常的 LTD 并抑制增强的 LTP。因此,AKAP150 锚定的 CaN 与 PKA 对 GluA1 的磷酸化作用相反,以限制 Ca(2+)通透性 AMPAR 的突触整合,无论是在基础状态还是在 LTP 和 LTD 期间。